scholarly journals Layered double hydroxide nanoparticles as an adjuvant for inactivated foot-and-mouth disease vaccine in pigs

2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Peng Wu ◽  
Yunfeng Zhang ◽  
Xinyue Yin ◽  
Yanhua He ◽  
Qian Zhang ◽  
...  

Abstract Background Foot-and-mouth disease (FMD) is a highly transmissible disease that leads to vast economic losses in many countries. Prevention using inactivated vaccines is one effective measure used to control FMD. Unfortunately, inactivated FMD vaccines provide only short-term protection and require a cold-chain system. In recent years, many studies have shown that layered double metal hydroxides (LDHs) carrying antigens can be used to strongly induce immune responses. In this study, LDH nanoparticles (NPs) were prepared by hydrothermal synthesis. LDH particle size, electric potential, and morphology were measured and observed. The adsorption capacity of LDH NPs to FMDV was tested. The effects of LDH as an adjuvant on inactivated FMDV vaccines were further evaluated and compared with commercial FMDV Montanide ISA-206 in BALB/C female mice and Yorkshire pigs. Results LDH NPs were successfully prepared with a uniform particle size of ~ 87.21 nm, regular edges, a loose hexagonal shape and positive zeta charge of 32 mV. The maximum absorption concentration was 0.16–0.31 μg FMDV/μg LDH. In the mouse experiment, antibody levels in group LDH + FMDV were significantly higher compared to group saline + FMDV (P < 0.01) from days 42–98 and were significantly higher to group ISA-206 + FMDV on day 56 post-immunization (P < 0.05). After day 14 post-immunization, IFN-γ content was significantly increased (P < 0.05). In the pig experiment, antibody levels in both the ISA-206 + FMDV and LDH + FMDV were positive and were significantly higher compared with the PBS group on day 7 (P < 0.005). Antibody levels in 90% pigs were positive on day 56 in the LDH group. The neutralizing antibody levels in the LDH and ISA-206 groups were significantly higher from days 7–28 compared to the PBS control group (P < 0.05). Thus, LDH NPs were effective at inducing an immune response against FMDV. Conclusions LDHs with a loose hexagonal shape and a positive charge were prepared and evaluated as adjuvant for FMD vaccine. It was demonstrated that LDHs can induce immune responses in mice and pigs. In addition, the LDHs produced antibodies continuously which may indicate a slow-release effect. The study shows that LDHs may act as a potentially useful FMDV adjuvant.

2020 ◽  
Author(s):  
Peng Wu ◽  
Yunfeng Zhang ◽  
Xinyue Yin ◽  
Yanhua He ◽  
Qian Zhang ◽  
...  

Abstract Background: Foot-and-mouth disease (FMD) is a highly transmissible disease that leads to vast economic losses in many countries. Prevention using inactivated vaccines is one effective measure used to control FMD. Unfortunately, inactivated FMD vaccines provide only short-term protection and require a cold-chain system. In recent years, many studies have shown that layered double metal hydroxides (LDHs) carrying antigens can be used to strongly induce immune responses. In this study, LDH nanoparticles (NPs) were prepared by hydrothermal synthesis. LDH particle size, electric potential, and morphology were measured and observed. The adsorption capacity of LDH NPs to FMDV was tested. The effects of LDH as an adjuvant on inactivated FMDV vaccines were further evaluated and compared with commercial FMDV ISA-206 in BALB/C female mice and Yorkshire pigs.Results: LDH NPs were successfully prepared with a uniform particle size of ~87.21 nm, regular edges, a loose hexagonal shape and positive zeta charge of 32 mV. The maximum absorption concentration was 0.16-0.31 µg FMDV/µg LDH. In the mouse experiment, antibody of immunized with LDH + FMDV were induced significantly higher from days 42-98 compared to saline + FMDV (P<0.01) and significantly higher compared to ISA-206+FMDV on day 56 post-immunization (P<0.05). After day14 post-immunization, IFN-γ content was significantly increased (P<0.05). In the pig experiment, antibody levels in both the ISA-206 + FMDV and LDH + FMDV were positive and were significantly higher compared with the PBS group on day 7 (P<0.005). Antibody levels in 90% pigs were positive on day 56 in the LDH group. The neutralizing antibody levels in the LDH and ISA-206 groups were significantly higher from days 7-28 compared to the PBS control group (P<0.05). Thus, LDH NPs were effective at inducing an immune response against FMDV.Conclusions: LDHs with a loose hexagonal shape and a positive charge were prepared. LDHs can effectively induce humoral- and cell-mediated immune responses in mice and pigs. In addition, the LDHs had a slow-release effect and produced antibodies continuously. LDHs may act as an excellent FMDV adjuvant.


Intervirology ◽  
2015 ◽  
Vol 58 (3) ◽  
pp. 190-196 ◽  
Author(s):  
Farahnaz Motamedi-Sedeh ◽  
Hoorieh Soleimanjahi ◽  
Amir Reza Jalilian ◽  
Homayoon Mahravani ◽  
Kamalodin Shafaee ◽  
...  

Objectives: Foot-and-mouth disease virus (FMDV) causes a highly contagious disease in cloven-hoofed animals and is the most damaging disease of livestock worldwide, leading to great economic losses. The aim of this research was the inactivation of FMDV type O/IRN/1/2007 to produce a gamma ray-irradiated (GRI) vaccine in order to immunize mice and guinea pigs. Methods: In this research, the Iranian isolated FMDV type O/IRN/1/2007 was irradiated by gamma ray to prepare an inactivated whole virus antigen and formulated as a GRI vaccine with unaltered antigenic characteristics. Immune responses against this vaccine were evaluated on mice and guinea pigs. Results: The comparison of the immune responses between the GRI vaccine and conventional vaccine did not show any significant difference in neutralizing antibody titer, memory spleen T lymphocytes or IFN-γ, IL-4, IL-2 and IL-10 concentrations (p > 0.05). In contrast, there were significant differences in all of the evaluated immune factors between the two vaccinated groups of mice and negative control mice (p < 0.05). The protective dose 50 for the conventional and GRI vaccines obtained were 6.28 and 7.07, respectively, which indicated the high potency of both vaccines. Conclusion: GRI vaccine is suitable for both routine vaccination and control of FMDV in emergency outbreaks.


2018 ◽  
Author(s):  
Guoqiang Wang ◽  
Yunchao Liu ◽  
Hua Feng ◽  
Yumei Chen ◽  
Suzhen Yang ◽  
...  

Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals that has caused tremendous economic losses worldwide. In this study, we designed a chimeric nanoparticles vaccine with the predominant epitope of FMDV (VP1 131–160) displayed on the top of the coat protein (CP) of MS2 phage. The recombinant protein was expressed in E. coli and can self-assembled into chimeric nanoparticles (CNPs) with diameter 20-25nm. A tandem repeat peptide epitopes (VP1 131–160) (TRE) was prepared as control. Mice immunized with CNPs and TRE respectively and immunogenicity evaluated show that CNPs stimulated equivalent specific antibody levels to commercialized synthetic peptide vaccines (PepVac), but was significantly higher than TRE groups. Moreover, results from specific IFN-γ responses and lymphocyte proliferation test indicated that CNPs immunized mice exhibited significantly enhanced cellular immune response. These studies suggested that the CNPs constructed in current study could be a potential alternative vaccine in future FMDV control.


2018 ◽  
Author(s):  
Guoqiang Wang ◽  
Yunchao Liu ◽  
Hua Feng ◽  
Yumei Chen ◽  
Suzhen Yang ◽  
...  

Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals that has caused tremendous economic losses worldwide. In this study, we designed a chimeric nanoparticles vaccine with the predominant epitope of FMDV (VP1 131–160) displayed on the top of the coat protein (CP) of MS2 phage. The recombinant protein was expressed in E. coli and can self-assembled into chimeric nanoparticles (CNPs) with diameter 20-25nm. A tandem repeat peptide epitopes (VP1 131–160) (TRE) was prepared as control. Mice immunized with CNPs and TRE respectively and immunogenicity evaluated show that CNPs stimulated equivalent specific antibody levels to commercialized synthetic peptide vaccines (PepVac), but was significantly higher than TRE groups. Moreover, results from specific IFN-γ responses and lymphocyte proliferation test indicated that CNPs immunized mice exhibited significantly enhanced cellular immune response. These studies suggested that the CNPs constructed in current study could be a potential alternative vaccine in future FMDV control.


2010 ◽  
Vol 92 (4) ◽  
pp. 849-859 ◽  
Author(s):  
B. Blignaut ◽  
N. Visser ◽  
J. Theron ◽  
E. Rieder ◽  
F. F. Maree

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Xinsheng Liu ◽  
Jianliang Lv ◽  
Yuzhen Fang ◽  
Peng Zhou ◽  
Yanzhen Lu ◽  
...  

Improving vaccine immunogenicity by targeting antigens to dendritic cells has recently emerged as a new design strategy in vaccine development. In this study, the VP1 gene of foot-and-mouth disease virus (FMDV) serotype A was fused with the gene encoding human immunodeficiency virus (HIV) membrane glycoprotein gp120 or C2-V3 domain of hepatitis C virus (HCV) envelope glycoprotein E2, both of which are DC-SIGN-binding glycoproteins. After codon optimization, the VP1 protein and the two recombinant VP1-gp120 and VP1-E2 fusion proteins were expressed in Sf9 insect cells using the insect cell-baculovirus expression system. Western blotting showed that the VP1 protein and two recombinant VP1-gp120 and VP1-E2 fusion proteins were correctly expressed in the Sf9 insect cells and had good reactogenicity. Guinea pigs were then immunized with the purified proteins, and the resulting humoral and cellular immune responses were analyzed. The VP1-gp120 and VP1-E2 fusion proteins induced significantly higher specific anti-FMDV antibody levels than the VP1 protein and stronger cell-mediated immune responses. This study provides a new perspective for the development of novel FMDV subunit vaccines.


2021 ◽  
Author(s):  
Hu Dong ◽  
Pan Liu ◽  
Manyuan Bai ◽  
Kang Wang ◽  
Rui Feng ◽  
...  

Outbreaks of Foot-and-mouth disease (FMD) caused by FMD virus result in significant economic losses. Vaccination is helpful, but the benefits are diminished with antigenic diversity within serotypes, instability of the immunogen and inability to confer protection for long durations. Here we have further dissected the mechanisms underpinning the protective efficacy of two previously reported neutralizing antibodies (NAbs), M8 and M170. The atomic details of the epitopes of M8 and M170 unveiled suggest that protection is conferred by disrupting the virus-receptor interactions. Consequently, administration of these NAbs conferred prophylactic and therapeutic benefit in guinea pigs, raising the possibility of administering NAbs before or during vaccination to confer immediate protection; well before the bolstering of the immune response by the vaccine. Differences in the residues and the conformation of elements making up the epitopes explain the differences in specificities of M8 and M170. An ability to bind 146S viral particles specifically, but not 12S degraded components, highlights a likely role for M170 in the quality control of vaccines.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Soumendu Chakravarti ◽  
Caroline Wright ◽  
Emma Howes ◽  
Richard Kock ◽  
Terry Jackson ◽  
...  

The picornavirus foot-and-mouth disease virus (FMDV) is responsible for one of the most significant diseases of livestock, leading to large economic losses due to reduced productivity and trade embargoes for areas not certified as disease-free. The picornavirus non-structural protein 3A is involved in replication of the viral RNA genome and is implicated in host tropism of several picornaviruses. Deletions in the C-terminus of 3A have been observed in FMDV outbreaks specific for swine and such viruses are non-pathogenic in cattle. The mechanism for species specific attenuation of FMDV is unknown. We have shown that FMDV containing a C-terminal deletion in 3A is attenuated in bovine cell culture and that the attenuated phenotype can be reversed by the JAK1/2 inhibitor Ruxolitinib (Rux), identifying a role for the induction of interferon stimulated genes (ISGs) in the restricted bovine tropism of the 3A-deleted virus.


Sign in / Sign up

Export Citation Format

Share Document