scholarly journals In vitro invasion inhibition assay using antibodies against Plasmodium knowlesi Duffy binding protein alpha and apical membrane antigen protein 1 in human erythrocyte-adapted P. knowlesi A1-H.1 strain

2018 ◽  
Vol 17 (1) ◽  
Author(s):  
Fauzi Muh ◽  
Seong-Kyun Lee ◽  
Mohammad Rafiul Hoque ◽  
Jin-Hee Han ◽  
Ji-Hoon Park ◽  
...  
2016 ◽  
Vol 113 (26) ◽  
pp. 7231-7236 ◽  
Author(s):  
Robert W. Moon ◽  
Hazem Sharaf ◽  
Claire H. Hastings ◽  
Yung Shwen Ho ◽  
Mridul B. Nair ◽  
...  

The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.


2009 ◽  
Vol 16 (7) ◽  
pp. 963-968 ◽  
Author(s):  
Kazutoyo Miura ◽  
Hong Zhou ◽  
Ababacar Diouf ◽  
Samuel E. Moretz ◽  
Michael P. Fay ◽  
...  

ABSTRACT Apical membrane antigen 1 (AMA1) and the 42-kDa merozoite surface protein 1 (MSP142) are leading malaria vaccine candidates. Several preclinical and clinical trials have been conducted, and an in vitro parasite growth inhibition assay has been used to evaluate the biological activities of the resulting antibodies. In a U.S. phase 1 trial with AMA1-C1/Alhydrogel plus CPG 7909, the vaccination elicited anti-AMA1 immunoglobulin G (IgG) which showed up to 96% inhibition. However, antibodies induced by MSP142-C1/Alhydrogel plus CPG 7909 vaccine showed less than 32% inhibition in vitro. To determine whether anti-MSP142 IgG had less growth-inhibitory activity than anti-AMA1 IgG in vitro, the amounts of IgG that produced 50% inhibition of parasite growth (Ab50) were compared for rabbit and human antibodies. The Ab50s of rabbit and human anti-MSP142 IgGs were significantly higher (0.21 and 0.62 mg/ml, respectively) than those of anti-AMA1 IgGs (0.07 and 0.10 mg/ml, respectively) against 3D7 parasites. Ab50 data against FVO parasites also demonstrated significant differences. We further investigated the Ab50s of mouse and monkey anti-AMA1 IgGs and showed that there were significant differences between the species (mouse, 0.28 mg/ml, and monkey, 0.14 mg/ml, against 3D7 parasites). Although it is unknown whether growth-inhibitory activity in vitro reflects protective immunity in vivo, this study showed that the Ab50 varies with both antigen and species. Our data provide a benchmark for antibody levels for future AMA1- or MSP142-based vaccine development efforts in preclinical and clinical trials.


Sign in / Sign up

Export Citation Format

Share Document