scholarly journals Impact of seasonality and malaria control interventions on Anopheles density and species composition from three areas of Uganda with differing malaria endemicity

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Henry Ddumba Mawejje ◽  
Maxwell Kilama ◽  
Simon P. Kigozi ◽  
Alex K. Musiime ◽  
Moses Kamya ◽  
...  

Abstract Background Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the malaria control interventions primarily responsible for reductions in transmission intensity across sub-Saharan Africa. These interventions, however, may have differential impact on Anopheles species composition and density. This study examined the changing pattern of Anopheles species in three areas of Uganda with markedly different transmission intensities and different levels of vector control. Methods From October 2011 to June 2016 mosquitoes were collected monthly using CDC light traps from 100 randomly selected households in three areas: Walukuba (low transmission), Kihihi (moderate transmission) and Nagongera (high transmission). LLINs were distributed in November 2013 in Walukuba and Nagongera and in June 2014 in Kihihi. IRS was implemented only in Nagongera, with three rounds of bendiocarb delivered between December 2014 and June 2015. Mosquito species were identified morphologically and by PCR (Polymerase Chain Reaction). Results In Walukuba, LLIN distribution was associated with a decline in Anopheles funestus vector density (0.07 vs 0.02 mosquitoes per house per night, density ratio [DR] 0.34, 95% CI: 0.18–0.65, p = 0.001), but not Anopheles gambiae sensu stricto (s.s.) nor Anopheles arabiensis. In Kihihi, over 98% of mosquitoes were An. gambiae s.s. and LLIN distribution was associated with a decline in An. gambiae s.s. vector density (4.00 vs 2.46, DR 0.68, 95% CI: 0.49–0.94, p = 0.02). In Nagongera, the combination of LLINs and multiple rounds of IRS was associated with almost complete elimination of An. gambiae s.s. (28.0 vs 0.17, DR 0.004, 95% CI: 0.002–0.009, p < 0.001), and An. funestus sensu lato (s.l.) (3.90 vs 0.006, DR 0.001, 95% CI: 0.0005–0.004, p < 0.001), with a less pronounced decline in An. arabiensis (9.18 vs 2.00, DR 0.15 95% CI: 0.07–0.33, p < 0.001). Conclusions LLIN distribution was associated with reductions in An. funestus s.l. in the lowest transmission site and An. gambiae s.s. in the moderate transmission site. In the highest transmission site, a combination of LLINs and multiple rounds of IRS was associated with the near collapse of An. gambiae s.s. and An. funestus s.l. Following IRS, An. arabiensis, a behaviourally resilient vector, became the predominant species, which may have implications for malaria vector control activities. Development of interventions targeted at outdoor biting remains a priority.

2020 ◽  
Author(s):  
Henry Mawejje ◽  
Maxwell Kilama ◽  
Simon P. Kigozi ◽  
Alex K. Musiime ◽  
Moses Kamya ◽  
...  

Abstract Background Long lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are malaria control interventions primarily responsible for reductions in transmission intensity across sub-Saharan Africa. These interventions, however, may have differential impact on Anopheles species composition and density. Here, we studied the changing pattern of Anopheles species in three areas of Uganda with markedly different transmission intensities and different levels of vector control.Methods From October 2011 to June 2016 mosquitoes were collected monthly using CDC light traps from 100 randomly selected households in three areas: Walukuba (low transmission), Kihihi (moderate transmission) and Nagongera (high transmission). LLINs were distributed in November 2013 in Walukuba and Nagongera and in June 2014 in Kihihi. IRS was implemented only in Nagongera, with three rounds of bendiocarb delivered between December 2014 and June 2015. Mosquito species were identified morphologically and by PCR (Polymerase Chain Reaction). Results In Walukuba, LLIN distribution was associated with a decline in Anopheles funestus vector density (0.07 vs 0.02 mosquitoes per house per night, density ratio [DR] 0.34, 95% CI: 0.18-0.65, p=0.001), but not An. gambiae s.s. nor An. arabiensis. In Kihihi, over 98% of mosquitoes were An. gambiae s.s. and LLIN distribution was associated with a decline in An. gambiae s.s. vector density (4.00 vs 2.46, DR 0.68, 95% CI: 0.49-0.94, p=0.02). In Nagongera, the combination of LLINs and multiple rounds of IRS was associated with almost complete elimination of An. gambiae s.s. (28.0 vs 0.17, DR 0.004, 95% CI: 0.002-0.009, p<0.001), and An. funestus s.l. (3.90 vs 0.006, DR 0.001, 95% CI: 0.0005-0.004, p<0.001), with a less pronounced decline in An. arabiensis (9.18 vs 2.00, DR 0.15 95% CI: 0.07-0.33, p<0.001). Conclusions LLIN distribution was associated with reductions in An. funestus s.l. in the lowest transmission site and An. gambiae s.s. in the moderate transmission site. In the highest transmission site, a combination of LLINs and multiple rounds of IRS was associated with the near collapse of An. gambiae s.s. and An. funestus s.l. Following IRS, An. arabiensis, a behaviorally resilient vector, became the predominant species, which may have implications for malaria vector control activities.


2021 ◽  
Author(s):  
Henry Mawejje ◽  
Maxwell Kilama ◽  
Simon P. Kigozi ◽  
Alex K. Musiime ◽  
Moses Kamya ◽  
...  

Abstract Background Long lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are malaria control interventions primarily responsible for reductions in transmission intensity across sub-Saharan Africa. These interventions, however, may have differential impact on Anopheles species composition and density. Here, we studied the changing pattern of Anopheles species in three areas of Uganda with markedly different transmission intensities and different levels of vector control. Methods From October 2011 to June 2016 mosquitoes were collected monthly using CDC light traps from 100 randomly selected households in three areas: Walukuba (low transmission), Kihihi (moderate transmission) and Nagongera (high transmission). LLINs were distributed in November 2013 in Walukuba and Nagongera and in June 2014 in Kihihi. IRS was implemented only in Nagongera, with three rounds of bendiocarb delivered between December 2014 and June 2015. Mosquito species were identified morphologically and by PCR (Polymerase Chain Reaction). Results In Walukuba, LLIN distribution was associated with a decline in Anopheles funestus vector density (0.07 vs 0.02 mosquitoes per house per night, density ratio [DR] 0.34, 95% CI: 0.18-0.65, p=0.001), but not An. gambiae s.s. nor An. arabiensis. In Kihihi, over 98% of mosquitoes were An. gambiae s.s. and LLIN distribution was associated with a decline in An. gambiae s.s. vector density (4.00 vs 2.46, DR 0.68, 95% CI: 0.49-0.94, p=0.02). In Nagongera, the combination of LLINs and multiple rounds of IRS was associated with almost complete elimination of An. gambiae s.s. (28.0 vs 0.17, DR 0.004, 95% CI: 0.002-0.009, p<0.001), and An. funestus s.l. (3.90 vs 0.006, DR 0.001, 95% CI: 0.0005-0.004, p<0.001), with a less pronounced decline in An. arabiensis (9.18 vs 2.00, DR 0.15 95% CI: 0.07-0.33, p<0.001). Conclusions LLIN distribution was associated with reductions in An. funestus s.l. in the lowest transmission site and An. gambiae s.s. in the moderate transmission site. In the highest transmission site, a combination of LLINs and multiple rounds of IRS was associated with the near collapse of An. gambiae s.s. and An. funestus s.l. Following IRS, An. arabiensis, a behaviorally resilient vector, became the predominant species, which may have implications for malaria vector control activities. Development of interventions targeted at outdoor biting remains a priority.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Christophe Boëte ◽  
Sakib Burza ◽  
Estrella Lasry ◽  
Silvia Moriana ◽  
William Robertson

Abstract Background The use and implementation of novel tools for malaria control such as long lasting impregnated bednets (LLINs) and Indoor Residual Spraying (IRS) over the last decade has contributed to a substantial reduction in malaria burden globally. However numerous challenges exist particularly in relation to vector control in emergency settings. This study seeks to explore expert opinion on the utility of existing tools within the emergency context setting and to better understand the attitude towards emerging and innovative tools (including Genetically Modified Mosquitoes) to augment current approaches. Methods 80 experts in the field of malaria and vector control were invited to participate in a two-round Delphi survey. They were selected through a combination of literature (academic and policy publications) review and snowball sampling reflecting a range of relevant backgrounds including vector control experts, malaria programme managers and emergency response specialists. The survey was conducted online through a questionnaire including the possibility for free text entry, and concentrated on the following topics: Utility and sustainability of current vector control tools, both in and outside emergency settings Feasibility, utility and challenges of emerging vector control tools, both in and outside emergency settings Current and unmet research priorities in malaria vector control and in malaria control in general. Results 37 experts completed the first round and 31 completed the second round of the survey. There was a stronger consensus about the increased utility of LLIN compared to IRS in all settings, while insecticide-treated covers and blankets ranked very high only in emergency settings. When considering the combination of tools, the ones deemed most interesting always involved LLINs and IRS regardless of the setting, and the acceptability and the efficacy at reducing transmission are essential characteristics. Regarding perceptions of tools currently under development, consensus was towards improvement of existing tools rather than investing in novel approaches and the majority of respondents expressed distrust for genetic approaches. Conclusion Malaria vector control experts expressed more confidence for tools whose efficacy is backed up by epidemiological evidence, hence a preference for the improvement rather than the combination of existing tools. Moreover, while several novel tools are under development, the majority of innovative approaches did not receive support, particularly in emergency settings. Stakeholders involved in the development of novel tools should involve earlier and raise awareness of the potential effectiveness amongst a wider range of experts within the malaria community to increase acceptability and improve early adoption once the evidence base is established.


2019 ◽  
Vol 30 (5) ◽  
pp. 213-216
Author(s):  
Basil Brooke

The control of malaria transmitting mosquitoes hinges on accurate species identification. This enables assessments of insecticide susceptibilities and important behavioural characteristics (such as feeding and resting behaviours) by species, leading to the design of coherent insecticide-based control strategies that can be enhanced by additional methodologies for malaria elimination. Malaria is a mosquito-borne parasitic disease that affects many vertebrates including humans. Prior to the 20th century the human malarias (Plasmodium falciparum, P. vivax, P. malariae, P. ovale and P. knowlesi) occurred in tropical and temperate regions but their distribution has since reduced to the tropical belt with by far the highest incidence in sub-Saharan Africa. Global incidence for 2017 was estimated by the WHO at 219 million cases corresponding to 435 000 deaths. It is also estimated that investment in malaria control and elimination amounted to $3.1 billion in 2017. The control (and elimination) of malaria largely hinges on the suppression of mosquito vectors, accurate diagnosis and case detection, and case management using appropriate antimalarial drug regimens. Controlling malaria vector mosquitoes (and of course other mosquito-borne diseases) means being able to identify that which needs to be controlled. This is not unlike the maxim of knowing one's enemy, and disease vector control is often phrased in militaristic terms. The arsenal of tools in the war against malaria vectors includes insecticides, bed nets, repellents, larvicides, endectocides, toxic baits and even modified genes. This call to arms against the transmitters of a deadly disease presupposes that the enemy can be identified, which, unfortunately, is not as easy as it sounds. Identifying malaria vectors to species has posed a significant challenge ever since Ronald Ross and Giovanni Grassi implicated dappled-winged Anopheles mosquitoes in malaria transmission. They could not have known the Pandora's Box they had opened, because several Anopheles species are cryptic. Many hide in cryptic species complexes and groups that confound straightforward morphological methods of identifying them. A species complex is a group of morphologically identical species that are very closely related, but nevertheless vary significantly in their feeding and resting behaviours, and mate assortatively (i.e. they recognise and tend only to mate with conspecific partners) enough that hybridisations between them are rare. Many member species of these complexes are sufficiently diverged that cross-mating between them yields infertile or non-viable offspring, but not in all cases. A species group is a looser assortment of related species whose morphological features match to a point where they are very nearly identical, often requiring specimens from more than one life stage to identify them. They also mate assortatively, and hybrids are rarer or simply never occur. The problem for malaria control is that several vector species, including many primary vectors, are members of cryptic complexes or groups. These invariably contain vector and non-vector species, requiring a complex and laborious system to unravel them and ascribe unambiguous genetic methods for their identification. Added to this complexity is the possibility that any Anopheles. species that takes human blood is a potential vector of the human malarias, with the added caveat that not all populations within a species are vectors. Some member species, and even populations within a species, feed either exclusively on humans (anthropophagy) and are potentially high transmission intensity vectors, or exclusively on livestock animals (zoophagy) making them non-vectors, or take blood from a range of sources including humans, becoming potential vectors of low to medium transmission intensity. An added layer of complexity is genetic heterogeneity between populations within a species. It can be argued that this complexity is not necessarily a problem for malaria control. After all, the aim of suppressing or even eliminating vector populations is the interruption of transmission, regardless of what species they are. But mosquito adaptability dictates otherwise. This is because the primary method of malaria vector control is deployment of specially formulated insecticides against adult mosquitoes, either by indoor residual spraying (IRS) or the treatment of bed nets. Mosquito adaptability has enabled a powerful response to these interventions, with resistance to insecticides becoming so widespread that fully insecticide susceptible malaria vector populations are now quite rare.


2021 ◽  
Author(s):  
Peter Onyango Sangoro ◽  
Ulrike Fillinger ◽  
Kochelani Saili ◽  
Theresia Estomih Nkya ◽  
Rose Marubu ◽  
...  

Abstract Background: Concerted effort to control malaria has had a substantial impact on transmission of the disease in the past two decades. In areas where reduced malaria transmission is being sustained through insecticide-based vector control interventions, primarily long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), non-insecticidal complementary tools will likely be needed to push towards malaria elimination. Once interruption in local disease transmission is achieved, insecticide-based measures can be scaled down gradually and eventually phased out, saving on costs of sustaining control programmes and mitigating any unintended negative health and environmental impacts posed by insecticides. These non-insecticidal methods could eventually replace insecticidal methods of vector control. House screening, a non-insecticidal method, has a long history in malaria control, but is still not widely adopted in sub-Saharan Africa. This study aims to add to the evidence-base for this intervention in low transmission settings by assessing the efficacy, impact and feasibility of house screening in areas where LLINs are conventionally used for malaria control. Methods: A two-armed, household randomized clinical trial will be conducted in Mozambique, Zambia and Zimbabwe to evaluate whether combined use of house screens and LLINs affords better protection against clinical malaria in children between 6 months and 13 years compared to the sole use of LLINs. Eight hundred households will be enrolled in each study area, where 400 households will be randomly assigned the intervention, house screening and LLINs while the control households will be provided with LLINs only. Clinical malaria incidence will be estimated by actively following up one child from each household for 6 months over the malaria transmission season. Cross-sectional parasite prevalence will be estimated by testing all participating children for malaria parasites at the beginning and end of each transmission season using rapid diagnostic tests.CDC light traps and pyrethrum spray catches (PSC) will be used to sample adult mosquitoes and evaluate the impact of house screening on indoor mosquito density, species distribution and sporozoite rates.Discussion: This study will contribute epidemiological data on the impact of house screening on malaria transmission and assess the feasibility of its implementation on a programmatic scale. Trial registration: This trial was retrospectively registered on 11th August 2020. Registration number PACTR202008524310568.


Author(s):  
Ahmed I Omotayo ◽  
Adeolu T Ande ◽  
Adedayo O Oduola ◽  
Abiodun K Olakiigbe ◽  
Aishat K Ghazali ◽  
...  

Abstract Malaria is a leading public health challenge causing mortality and morbidity in sub-Saharan Africa. Prominent malaria vector control methods employed in sub-Saharan Africa include Long Lasting Insecticide Nets (LLINs) and Indoor Residual spraying (IRS). This study investigated knowledge, attitude and practices (KAP) of malaria vector control methods in Lagos, South-West Nigeria. Structured questionnaires were employed for the cross-sectional survey which was carried out between May and August 2018. Multi-stage sampling technique was used to select Lagos Mainland, Kosofe, and Ojo local government areas (LGAs). Five hundred and twenty questionnaires were used for the study. Data were analyzed for descriptive statistics, whereas χ 2 was used to determine influence of respondents’ LGA, level of education and type of dwelling on respondents’ attitude and practice. Respondents’ LGAs have no significant impact on attitude and practice to malaria vector control methods. However, ‘level of education’ as well as ‘type of dwelling structure’ impacted significantly on some practices and attitude. Basically, IRS is the major tool employed in malaria vector control, but sometimes it is used in combination with other methods. A good number of residents also use LLINs. ‘Choice of method’ employed is mainly based on the effectiveness of method. General perception about LLINs and IRS is that they are effective, cheap and safer. Considering the widespread use of IRS and LLINs for malaria vector control in Lagos, implementation of malaria control programs should consider KAP to these two strategies.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Sundus Shafat Ahmad ◽  
Manju Rahi ◽  
Poonam Saroha ◽  
Amit Sharma

AbstractMalaria constitutes one of the largest public health burdens faced by humanity. Malaria control has to be an efficient balance between diagnosis, treatment and vector control strategies. The World Health Organization currently recommends indoor residual spraying and impregnated bed nets as two malaria vector control methods that have shown robust and persistent results against endophilic and anthropophilic mosquito species. The Indian government launched the National Framework for Malaria Elimination in 2016 with the aim to achieve the elimination of malaria in a phased and strategic manner and to sustain a nation-wide malaria-free status by 2030. India is currently in a crucial phase of malaria elimination and novel vector control strategies maybe helpful in dealing with various challenges, such as vector behavioural adaptations and increasing insecticide resistance among the Anopheles populations of India. Ivermectin can be one such new tool as it is the first endectocide to be approved in both animals and humans. Trials of ivermectin have been conducted in endemic areas of Africa with promising results. In this review, we assess available data on ivermectin as an endectocide and propose that this endectocide should be explored as a vector control tool for malaria in India. Graphical Abstract


Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Onyango P. Sangoro ◽  
Ulrike Fillinger ◽  
Kochelani Saili ◽  
Theresia Estomih Nkya ◽  
Rose Marubu ◽  
...  

Abstract Background Concerted effort to control malaria has had a substantial impact on the transmission of the disease in the past two decades. In areas where reduced malaria transmission is being sustained through insecticide-based vector control interventions, primarily long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), non-insecticidal complementary tools will likely be needed to push towards malaria elimination. Once interruption in local disease transmission is achieved, insecticide-based measures can be scaled down gradually and eventually phased out, saving on costs of sustaining control programs and mitigating any unintended negative health and environmental impacts posed by insecticides. These non-insecticidal methods could eventually replace insecticidal methods of vector control. House screening, a non-insecticidal method, has a long history in malaria control, but is still not widely adopted in sub-Saharan Africa. This study aims to add to the evidence base for this intervention in low transmission settings by assessing the efficacy, impact, and feasibility of house screening in areas where LLINs are conventionally used for malaria control. Methods A two-armed, household randomized clinical trial will be conducted in Mozambique, Zambia, and Zimbabwe to evaluate whether combined the use of house screens and LLINs affords better protection against clinical malaria in children between 6 months and 13 years compared to the sole use of LLINs. Eight hundred households will be enrolled in each study area, where 400 households will be randomly assigned the intervention, house screening, and LLINs while the control households will be provided with LLINs only. Clinical malaria incidence will be estimated by actively following up one child from each household for 6 months over the malaria transmission season. Cross-sectional parasite prevalence will be estimated by testing all participating children for malaria parasites at the beginning and end of each transmission season using rapid diagnostic tests. CDC light traps and pyrethrum spray catches (PSC) will be used to sample adult mosquitoes and evaluate the impact of house screening on indoor mosquito density, species distribution, and sporozoite rates. Discussion This study will contribute epidemiological data on the impact of house screening on malaria transmission and assess the feasibility of its implementation on a programmatic scale. Trial registration ClinicalTrials.gov PACTR202008524310568. Registered on August 11, 2020.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Salum A. Mapua ◽  
Marceline F. Finda ◽  
Ismail H. Nambunga ◽  
Betwel J. Msugupakulya ◽  
Kusirye Ukio ◽  
...  

Abstract Background Larval source management was historically one of the most effective malaria control methods but is now widely deprioritized in Africa, where insecticide-treated nets (ITNs) and indoor residual spraying (IRS) are preferred. However, in Tanzania, following initial successes in urban Dar-es-Salaam starting early-2000s, the government now encourages larviciding in both rural and urban councils nationwide to complement other efforts; and a biolarvicide production-plant has been established outside the commercial capital. This study investigated key obstacles and opportunities relevant to effective rollout of larviciding for malaria control, with a focus on the meso-endemic region of Morogoro, southern Tanzania. Methods Key-informants were interviewed to assess awareness and perceptions regarding larviciding among designated health officials (malaria focal persons, vector surveillance officers and ward health officers) in nine administrative councils (n = 27). Interviewer-administered questionnaires were used to assess awareness and perceptions of community members in selected areas regarding larviciding (n = 490). Thematic content analysis was done and descriptive statistics used to summarize the findings. Results A majority of malaria control officials had participated in larviciding at least once over the previous three years. A majority of community members had neutral perceptions towards positive aspects of larviciding, but overall support for larviciding was high, although several challenges were expressed, notably: (i) insufficient knowledge for identifying relevant aquatic habitats of malaria vectors and applying larvicides, (ii) inadequate monitoring of programme effectiveness, (iii) limited financing, and (iv) lack of personal protective equipment. Although the key-informants reported sensitizing local communities, most community members were still unaware of larviciding and its potential. Conclusions The larviciding programme was widely supported by both communities and malaria control officials, but there were gaps in technical knowledge, implementation and public engagement. To improve overall impact, it is important to: (i) intensify training efforts, particularly for identifying habitats of important vectors, (ii) adopt standard technical principles for applying larvicides or larval source management, (iii) improve financing for local implementation and (iv) improve public engagement to boost community awareness and participation. These lessons could also be valuable for other malaria endemic areas wishing to deploy larviciding for malaria control or elimination.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Charles Kakilla ◽  
Alphaxard Manjurano ◽  
Karen Nelwin ◽  
Jackline Martin ◽  
Fabian Mashauri ◽  
...  

Abstract Background Vector control through long-lasting insecticidal nets (LLINs) and focal indoor residual spraying (IRS) is a major component of the Tanzania national malaria control strategy. In mainland Tanzania, IRS has been conducted annually around Lake Victoria basin since 2007. Due to pyrethroid resistance in malaria vectors, use of pyrethroids for IRS was phased out and from 2014 to 2017 pirimiphos-methyl (Actellic® 300CS) was sprayed in regions of Kagera, Geita, Mwanza, and Mara. Entomological surveillance was conducted in 10 sprayed and 4 unsprayed sites to determine the impact of IRS on entomological indices related to malaria transmission risk. Methods WHO cone bioassays were conducted monthly on interior house walls to determine residual efficacy of pirimiphos-methyl CS. Indoor CDC light traps with or without bottle rotator were hung next to protected sleepers indoors and also set outdoors (unbaited) as a proxy measure for indoor and outdoor biting rate and time of biting. Prokopack aspirators were used indoors to capture resting malaria vectors. A sub-sample of Anopheles was tested by PCR to determine species identity and ELISA for sporozoite rate. Results Annual IRS with Actellic® 300CS from 2015 to 2017 was effective on sprayed walls for a mean of 7 months in cone bioassay. PCR of 2016 and 2017 samples showed vector populations were predominantly Anopheles arabiensis (58.1%, n = 4,403 IRS sites, 58%, n = 2,441 unsprayed sites). There was a greater proportion of Anopheles funestus sensu stricto in unsprayed sites (20.4%, n = 858) than in sprayed sites (7.9%, n = 595) and fewer Anopheles parensis (2%, n = 85 unsprayed, 7.8%, n = 591 sprayed). Biting peaks of Anopheles gambiae sensu lato (s.l.) followed periods of rainfall occurring between October and April, but were generally lower in sprayed sites than unsprayed. In most sprayed sites, An. gambiae s.l. indoor densities increased between January and February, i.e., 10–12 months after IRS. The predominant species An. arabiensis had a sporozoite rate in 2017 of 2.0% (95% CI 1.4–2.9) in unsprayed sites compared to 0.8% (95% CI 0.5–1.3) in sprayed sites (p = 0.003). Sporozoite rates were also lower for An. funestus collected in sprayed sites. Conclusion This study contributes to the understanding of malaria vector species composition, behaviour and transmission risk following IRS around Lake Victoria and can be used to guide malaria vector control strategies in Tanzania.


Sign in / Sign up

Export Citation Format

Share Document