Mosquitoes and Malaria Control – A Complex Problem for Entomologists to Unravel

2019 ◽  
Vol 30 (5) ◽  
pp. 213-216
Author(s):  
Basil Brooke

The control of malaria transmitting mosquitoes hinges on accurate species identification. This enables assessments of insecticide susceptibilities and important behavioural characteristics (such as feeding and resting behaviours) by species, leading to the design of coherent insecticide-based control strategies that can be enhanced by additional methodologies for malaria elimination. Malaria is a mosquito-borne parasitic disease that affects many vertebrates including humans. Prior to the 20th century the human malarias (Plasmodium falciparum, P. vivax, P. malariae, P. ovale and P. knowlesi) occurred in tropical and temperate regions but their distribution has since reduced to the tropical belt with by far the highest incidence in sub-Saharan Africa. Global incidence for 2017 was estimated by the WHO at 219 million cases corresponding to 435 000 deaths. It is also estimated that investment in malaria control and elimination amounted to $3.1 billion in 2017. The control (and elimination) of malaria largely hinges on the suppression of mosquito vectors, accurate diagnosis and case detection, and case management using appropriate antimalarial drug regimens. Controlling malaria vector mosquitoes (and of course other mosquito-borne diseases) means being able to identify that which needs to be controlled. This is not unlike the maxim of knowing one's enemy, and disease vector control is often phrased in militaristic terms. The arsenal of tools in the war against malaria vectors includes insecticides, bed nets, repellents, larvicides, endectocides, toxic baits and even modified genes. This call to arms against the transmitters of a deadly disease presupposes that the enemy can be identified, which, unfortunately, is not as easy as it sounds. Identifying malaria vectors to species has posed a significant challenge ever since Ronald Ross and Giovanni Grassi implicated dappled-winged Anopheles mosquitoes in malaria transmission. They could not have known the Pandora's Box they had opened, because several Anopheles species are cryptic. Many hide in cryptic species complexes and groups that confound straightforward morphological methods of identifying them. A species complex is a group of morphologically identical species that are very closely related, but nevertheless vary significantly in their feeding and resting behaviours, and mate assortatively (i.e. they recognise and tend only to mate with conspecific partners) enough that hybridisations between them are rare. Many member species of these complexes are sufficiently diverged that cross-mating between them yields infertile or non-viable offspring, but not in all cases. A species group is a looser assortment of related species whose morphological features match to a point where they are very nearly identical, often requiring specimens from more than one life stage to identify them. They also mate assortatively, and hybrids are rarer or simply never occur. The problem for malaria control is that several vector species, including many primary vectors, are members of cryptic complexes or groups. These invariably contain vector and non-vector species, requiring a complex and laborious system to unravel them and ascribe unambiguous genetic methods for their identification. Added to this complexity is the possibility that any Anopheles. species that takes human blood is a potential vector of the human malarias, with the added caveat that not all populations within a species are vectors. Some member species, and even populations within a species, feed either exclusively on humans (anthropophagy) and are potentially high transmission intensity vectors, or exclusively on livestock animals (zoophagy) making them non-vectors, or take blood from a range of sources including humans, becoming potential vectors of low to medium transmission intensity. An added layer of complexity is genetic heterogeneity between populations within a species. It can be argued that this complexity is not necessarily a problem for malaria control. After all, the aim of suppressing or even eliminating vector populations is the interruption of transmission, regardless of what species they are. But mosquito adaptability dictates otherwise. This is because the primary method of malaria vector control is deployment of specially formulated insecticides against adult mosquitoes, either by indoor residual spraying (IRS) or the treatment of bed nets. Mosquito adaptability has enabled a powerful response to these interventions, with resistance to insecticides becoming so widespread that fully insecticide susceptible malaria vector populations are now quite rare.

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Charles Kakilla ◽  
Alphaxard Manjurano ◽  
Karen Nelwin ◽  
Jackline Martin ◽  
Fabian Mashauri ◽  
...  

Abstract Background Vector control through long-lasting insecticidal nets (LLINs) and focal indoor residual spraying (IRS) is a major component of the Tanzania national malaria control strategy. In mainland Tanzania, IRS has been conducted annually around Lake Victoria basin since 2007. Due to pyrethroid resistance in malaria vectors, use of pyrethroids for IRS was phased out and from 2014 to 2017 pirimiphos-methyl (Actellic® 300CS) was sprayed in regions of Kagera, Geita, Mwanza, and Mara. Entomological surveillance was conducted in 10 sprayed and 4 unsprayed sites to determine the impact of IRS on entomological indices related to malaria transmission risk. Methods WHO cone bioassays were conducted monthly on interior house walls to determine residual efficacy of pirimiphos-methyl CS. Indoor CDC light traps with or without bottle rotator were hung next to protected sleepers indoors and also set outdoors (unbaited) as a proxy measure for indoor and outdoor biting rate and time of biting. Prokopack aspirators were used indoors to capture resting malaria vectors. A sub-sample of Anopheles was tested by PCR to determine species identity and ELISA for sporozoite rate. Results Annual IRS with Actellic® 300CS from 2015 to 2017 was effective on sprayed walls for a mean of 7 months in cone bioassay. PCR of 2016 and 2017 samples showed vector populations were predominantly Anopheles arabiensis (58.1%, n = 4,403 IRS sites, 58%, n = 2,441 unsprayed sites). There was a greater proportion of Anopheles funestus sensu stricto in unsprayed sites (20.4%, n = 858) than in sprayed sites (7.9%, n = 595) and fewer Anopheles parensis (2%, n = 85 unsprayed, 7.8%, n = 591 sprayed). Biting peaks of Anopheles gambiae sensu lato (s.l.) followed periods of rainfall occurring between October and April, but were generally lower in sprayed sites than unsprayed. In most sprayed sites, An. gambiae s.l. indoor densities increased between January and February, i.e., 10–12 months after IRS. The predominant species An. arabiensis had a sporozoite rate in 2017 of 2.0% (95% CI 1.4–2.9) in unsprayed sites compared to 0.8% (95% CI 0.5–1.3) in sprayed sites (p = 0.003). Sporozoite rates were also lower for An. funestus collected in sprayed sites. Conclusion This study contributes to the understanding of malaria vector species composition, behaviour and transmission risk following IRS around Lake Victoria and can be used to guide malaria vector control strategies in Tanzania.


2021 ◽  
Author(s):  
Abebe Asale ◽  
Zewdu Abro ◽  
Bayu Enchalew ◽  
Alayu Tesager ◽  
Aklilu Belay ◽  
...  

Abstract Background: Key program components of malaria control in Ethiopia include community empowerment and mobilization, vector control using long-lasting insecticidal nets (LLINs), indoor residual spraying (IRS), prompt diagnosis and treatment, and disease surveillance. However, the effectiveness of these interventions is often undermined by various challenges, including insecticide and drug resistance, the plasticity of malaria vectors feeding and biting behavior, and certain household factors that lead to misuse and poor utilization of LLINs. The primary objective of this study was to document households’ perceptions towards malaria and assess the prevalence of the disease and the constraints related to the ongoing interventions in Ethiopia (LLINs, IRS, community mobilization house screening). Method: The study was conducted in Jabi Tehnan district, Northwestern Ethiopi,a from November 2019 to March 2020. A total of 3,010 households distributed over 38 kebeles (villages) were randomly selected for socio-economic and demographic survey. Focus group discussions (FGDs) were conducted in 11 different health clusters taking into account agro-ecological differences. A total of 1,256 children under 10 years of age were screened for malaria parasites using microscopy in order to determine malaria prevalence. Furthermore, five-year malaria trend analysis was undertaken based on data obtained from the district health office to understand the disease dynamics.Result: Malaria knowledge in the area was high as all FGD participants correctly identified mosquito bites during the night as sources of malaria transmission. Delayed health seeking behavior remains a key behavioral challenge in malaria control as it took patients on average 4 days before reporting the case at the nearby health facility. On average households lost 2.53 working days per person-per malaria episode and theey spent US$ 18 per person perepisode. Out of the 1,256 randomly selected under 10 children tested for malaria parasites, 11 (0.89%) were found to be positive. Malaria disproportionately affected the adult segment of the population more, 50% of the total cases reported from households whose age was 15 and beyond. The second most affected group was the age group between 5 and 14 years followed by children under 10, with 31% and 14% burden,respectively.Conclusion: Despite the achievement of universal coverage in terms of LLINs access, utilization of vector control interventions in the area remained low.Using bed nets for unintended purposes remained a major challenge. Therefore, continued community education and communication work should be prioritised in the study area to bring about the desired behavioral changes.


2020 ◽  
Author(s):  
Charles Elias Kakilla ◽  
Alphaxard Manjurano ◽  
Karen Nelwin ◽  
Jackline Martin ◽  
Fabian Mashauri ◽  
...  

Abstract BackgroundVector control through long-lasting insecticidal nets (LLINs) and focal indoor residual spraying (IRS) is a major component of the Tanzania national malaria control strategy. In mainland Tanzania, IRS has been conducted annually around Lake Victoria basin since 2007. Due to pyrethroid resistance in malaria vectors, use of pyrethroids for IRS was phased out and from 2014 to 2017 pirimiphos-methyl (Actellic® 300CS) was sprayed in regions of Kagera, Geita, Mwanza, and Mara. Entomological surveillance was conducted in 10 sprayed and 4 unsprayed sites to determine the impact of IRS on entomological indices related to malaria transmission risk.MethodsWHO cone bioassays were conducted monthly on interior house walls to determine residual efficacy of pirimiphos-methyl CS. Indoor CDC light traps with or without bottle rotator were hung next to protected sleepers indoors and also set outdoors (unbaited) as a proxy measure for indoor and outdoor biting rate and time of biting. Prokopack aspirators were used indoors to capture potentially resting malaria vectors. A sub-sample of Anopheles was tested by PCR to determine species identity and ELISA for sporozoite rate. ResultsAnnual IRS with Actellic® 300CS from 2015 to 2017 was effective on sprayed walls for a mean of 7 months in cone bioassay. PCR of 2016 and 2017 samples showed vector populations were predominantly Anopheles arabiensis (58.1%, n=4,403 IRS sites, 58%, n=2,441 unsprayed sites). There was a greater proportion of Anopheles funestus sensu stricto (s.l) in unsprayed sites (20.4%, n=858) than in sprayed sites (7.9%, n=595) and fewer Anopheles parensis (2%, n=85 unsprayed, 7.8%, n=591 sprayed). Biting peaks of Anopheles gambiae sensu lato (s.l.) followed periods of rainfall occurring between October and April, but were generally lower in sprayed sites than unsprayed. In most sprayed sites, An. gambiae s.l. indoor densities increased between January and February, i.e., 10-12 months after IRS. The predominant species An. arabiensis had a sporozoite rate in 2017 of 2.0% (95% CI: 1.4-2.9) in unsprayed sites compared to 0.8% (95% CI: 0.5-1.3) in sprayed sites (p=0.003). Sporozoite rates were also lower for An. funestus collected in sprayed sites. ConclusionThis study contributes to the understanding of malaria vector species composition, behaviour and transmission risk following IRS around Lake Victoria and can be used to guide malaria vector control strategies in Tanzania.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Henry Ddumba Mawejje ◽  
Maxwell Kilama ◽  
Simon P. Kigozi ◽  
Alex K. Musiime ◽  
Moses Kamya ◽  
...  

Abstract Background Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the malaria control interventions primarily responsible for reductions in transmission intensity across sub-Saharan Africa. These interventions, however, may have differential impact on Anopheles species composition and density. This study examined the changing pattern of Anopheles species in three areas of Uganda with markedly different transmission intensities and different levels of vector control. Methods From October 2011 to June 2016 mosquitoes were collected monthly using CDC light traps from 100 randomly selected households in three areas: Walukuba (low transmission), Kihihi (moderate transmission) and Nagongera (high transmission). LLINs were distributed in November 2013 in Walukuba and Nagongera and in June 2014 in Kihihi. IRS was implemented only in Nagongera, with three rounds of bendiocarb delivered between December 2014 and June 2015. Mosquito species were identified morphologically and by PCR (Polymerase Chain Reaction). Results In Walukuba, LLIN distribution was associated with a decline in Anopheles funestus vector density (0.07 vs 0.02 mosquitoes per house per night, density ratio [DR] 0.34, 95% CI: 0.18–0.65, p = 0.001), but not Anopheles gambiae sensu stricto (s.s.) nor Anopheles arabiensis. In Kihihi, over 98% of mosquitoes were An. gambiae s.s. and LLIN distribution was associated with a decline in An. gambiae s.s. vector density (4.00 vs 2.46, DR 0.68, 95% CI: 0.49–0.94, p = 0.02). In Nagongera, the combination of LLINs and multiple rounds of IRS was associated with almost complete elimination of An. gambiae s.s. (28.0 vs 0.17, DR 0.004, 95% CI: 0.002–0.009, p < 0.001), and An. funestus sensu lato (s.l.) (3.90 vs 0.006, DR 0.001, 95% CI: 0.0005–0.004, p < 0.001), with a less pronounced decline in An. arabiensis (9.18 vs 2.00, DR 0.15 95% CI: 0.07–0.33, p < 0.001). Conclusions LLIN distribution was associated with reductions in An. funestus s.l. in the lowest transmission site and An. gambiae s.s. in the moderate transmission site. In the highest transmission site, a combination of LLINs and multiple rounds of IRS was associated with the near collapse of An. gambiae s.s. and An. funestus s.l. Following IRS, An. arabiensis, a behaviourally resilient vector, became the predominant species, which may have implications for malaria vector control activities. Development of interventions targeted at outdoor biting remains a priority.


2019 ◽  
Author(s):  
D.D Soma ◽  
B Zogo ◽  
P Taconet ◽  
A Somé ◽  
S Coulibaly ◽  
...  

AbstractBackgroundTo sustain the efficacy of malaria vector control, the World Health Organization (WHO) recommends the combination of effective tools. Before designing and implementing additional strategies in any setting, it is critical to monitor or predict when and where transmission occurs. However, to date, very few studies have quantified the behavioural interactions between humans and Anopheles vectors. Here, we characterized residual transmission in a rural area of Burkina Faso where long lasting insecticidal nets (LLIN) are widely used.MethodsWe analysed data on both human and malaria vectors behaviours from 27 villages to measure hourly human exposure to vector bites in dry and rainy seasons using mathematical models. We estimated the protective efficacy of LLINs and characterised where (indoors vs. outdoors) and when both LLIN users and non-users were exposed to vector bites.ResultsThe percentage of the population who declared sleeping under a LLIN the previous night was very high regardless of the season, with an average LLIN use ranging from 92.43% to 99.89%. The use of LLIN provided > 80% protection against exposure to vector bites. The proportion of exposure for LLIN users was 29-57% after 05:00 and 0.05-12 % before 20:00. More than 80% of exposure occurred indoors for LLIN users and the estimate reached 90% for children under five years old in the dry cold season.ConclusionsThis study supports the current use of LLIN as a primary malaria vector control tool. It also emphasises the need to complement LLIN with indoor-implemented measures such as indoor residual spraying (IRS) and/or house improvement to effectively combat malaria in the rural area of Diébougou. Furthermore, malaria elimination programmes would also require strategies that target outdoor biting vectors to be successful in the area.


2020 ◽  
Author(s):  
Corine Ngufor ◽  
Renaud Govoetchan ◽  
Augustin Fongnikin ◽  
Estelle Vigninou ◽  
Thomas Syme ◽  
...  

AbstractThe rotational use of insecticides with different modes of action for indoor residual spraying (IRS) is recommended for improving malaria vector control and managing insecticide resistance. A more diversified portfolio of IRS insecticides is required; insecticides with new chemistries which can provide improved and prolonged control of insecticide-resistant vector populations are urgently needed. Broflanilide is a newly discovered insecticide being considered for malaria vector control. We investigated the efficacy of a wettable powder (WP) formulation of broflanilide (VECTRON™ T500) for IRS on mud and cement wall substrates in WHO laboratory and experimental hut studies against pyrethroid-resistant malaria vectors in Benin, in comparison with pirimiphos-methyl CS (Actellic® 300CS). There was no evidence of cross-resistance to pyrethroids and broflanilide in CDC bottle bioassays. In laboratory cone bioassays, mortality of susceptible and pyrethroid-resistant A. gambiae s.l. with broflanilide WP treated substrates was >80% for 6-14 months. At application rates of 100mg/m2 and 150 mg/m2, mortality of wild pyrethroid-resistant A. gambiae s.l. entering treated experimental huts in Covè, Benin was 57%-66% with broflanilide WP and did not differ significantly from pirimiphos-methyl CS (57-66% vs. 56%, P>0.05). Mosquito mortality did not differ between the two application rates and local wall substrate-types tested (P>0.05). Throughout the 6-month hut trial, monthly wall cone bioassay mortality on broflanilide WP treated hut walls remained >80% for both susceptible and resistant strains of A. gambiae s.l.. Broflanilide shows potential to significantly improve the control of malaria transmitted by pyrethroid-resistant mosquito vectors and would thus be a crucial addition to the current portfolio of IRS insecticides.One Sentence SummaryVECTRON™ T500, a new wettable powder formulation of broflanilide developed for indoor residual spraying, showed high and prolonged activity against wild pyrethroid-resistant malaria vectors, on local wall substrates, in laboratory bioassays and experimental household settings in Benin.


Author(s):  
M. Y. Korti ◽  
T. B. Ageep ◽  
A. I. Adam ◽  
K. B. Shitta ◽  
A. A. Hassan ◽  
...  

Abstract Background Chemical control has been the most efficient method in mosquito control, the development of insecticide resistance in target populations has a significant impact on vector control. The use of agricultural pesticides may have a profound impact on the development of resistance in the field populations of malaria vectors. Our study focused on insecticide resistance and knockdown resistance (kdr) of Anopheles arabiensis populations from Northern Sudan, related to agricultural pesticide usage. Results Anopheles arabiensis from urban and rural localities (Merowe and Al-hamadab) were fully susceptible to bendiocarb 0.1% and permethrin 0.75% insecticides while resistant to DDT 4% and malathion 5%. The population of laboratory reference colony F189 from Dongola showed a mortality of 91% to DDT (4%) and fully susceptible to others. GLM analysis indicated that insecticides, sites, site type, and their interaction were determinant factors on mortality rates (P < 0.01). Except for malathion, mortality rates of all insecticides were not significant (P > 0.05) according to sites. Mortality rates of malathion and DDT were varied significantly (P < 0.0001 and P < 0.05 respectively) by site types, while mortality rates of bendiocarb and permethrin were not significant (P >0.05). The West African kdr mutation (L1014F) was found in urban and rural sites. Even though, the low-moderate frequency of kdr (L1014F) mutation was observed. The findings presented here for An. arabiensis showed no correlation between the resistant phenotype as ascertained by bioassay and the presence of the kdr mutation, with all individuals tested except the Merowe site which showed a moderate association with DDT (OR= 6 in allelic test), suggesting that kdr genotype would be a poor indicator of phenotypic resistance. Conclusion The results provide critical pieces of information regarding the insecticide susceptibility status of An. arabiensis in northern Sudan. The usage of the same pesticides in agricultural areas seemed to affect the Anopheles susceptibility when they are exposed to those insecticides in the field. The kdr mutation might have a less role than normally expected in pyrethroids resistance; however, other resistance genes should be in focus. These pieces of information will help to improve the surveillance system and The implication of different vector control programs employing any of these insecticides either in the treatment of bed nets or for indoor residual spraying would achieve satisfactory success rates.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Christophe Boëte ◽  
Sakib Burza ◽  
Estrella Lasry ◽  
Silvia Moriana ◽  
William Robertson

Abstract Background The use and implementation of novel tools for malaria control such as long lasting impregnated bednets (LLINs) and Indoor Residual Spraying (IRS) over the last decade has contributed to a substantial reduction in malaria burden globally. However numerous challenges exist particularly in relation to vector control in emergency settings. This study seeks to explore expert opinion on the utility of existing tools within the emergency context setting and to better understand the attitude towards emerging and innovative tools (including Genetically Modified Mosquitoes) to augment current approaches. Methods 80 experts in the field of malaria and vector control were invited to participate in a two-round Delphi survey. They were selected through a combination of literature (academic and policy publications) review and snowball sampling reflecting a range of relevant backgrounds including vector control experts, malaria programme managers and emergency response specialists. The survey was conducted online through a questionnaire including the possibility for free text entry, and concentrated on the following topics: Utility and sustainability of current vector control tools, both in and outside emergency settings Feasibility, utility and challenges of emerging vector control tools, both in and outside emergency settings Current and unmet research priorities in malaria vector control and in malaria control in general. Results 37 experts completed the first round and 31 completed the second round of the survey. There was a stronger consensus about the increased utility of LLIN compared to IRS in all settings, while insecticide-treated covers and blankets ranked very high only in emergency settings. When considering the combination of tools, the ones deemed most interesting always involved LLINs and IRS regardless of the setting, and the acceptability and the efficacy at reducing transmission are essential characteristics. Regarding perceptions of tools currently under development, consensus was towards improvement of existing tools rather than investing in novel approaches and the majority of respondents expressed distrust for genetic approaches. Conclusion Malaria vector control experts expressed more confidence for tools whose efficacy is backed up by epidemiological evidence, hence a preference for the improvement rather than the combination of existing tools. Moreover, while several novel tools are under development, the majority of innovative approaches did not receive support, particularly in emergency settings. Stakeholders involved in the development of novel tools should involve earlier and raise awareness of the potential effectiveness amongst a wider range of experts within the malaria community to increase acceptability and improve early adoption once the evidence base is established.


Author(s):  
Riyani Setiyaningsih ◽  
Wiwik Trapsilowati ◽  
Mujiyono Mujiyono ◽  
Lasmiati Lasmiati

Purworejo is the endemic area of ​​malaria with the highest case increase occurring in 2015 amounted to 1411 cases. Appropriate control can be performed effectively based on vector bionomics. The aims of study were to determine species, behavior, resistance, and control methods of malaria vectors. Methods were larva andmosquitoes collection, breeding place of mosquitoes surveys, resistance of mosquito and evaluation of the effectiveness of vector control. The research was conducted in Sendangsari Village, Bener District, Purworejo Regency The result of the research showed that An. barbirostris sucked blood indoor, outdoor, and cage. An. balabacensis sucked blood indoor and cage. An. maculatus, An. aconitus, An. kochi, An. Indifinitus, and An. fagus were found to suck blood in the cage. An. maculatus showed resistance to insecticide permetrin 0,75% Indoor Residual spraying (IRS) and the use of insecticide treated bed nets were the vector control perfomed in the area of study. The breeding place of mosquito were in hole around unused fields and pond. Based on bioassay test, the effectiveness of IRS application for one months were not effectively kill An. maculatus while the use of mosquito nets for three months were still effectively kill An. maculatus.


2020 ◽  
Author(s):  
Ilinca I. Ciubotariu ◽  
Christine M. Jones ◽  
Tamaki Kobayashi ◽  
Thierry Bobanga ◽  
Mbanga Muleba ◽  
...  

AbstractDespite ongoing malaria control efforts implemented throughout sub-Saharan Africa, malaria remains an enormous public health concern. Current interventions such as indoor residual spraying with insecticides and use of insecticide-treated bed nets are aimed at targeting the key malaria vectors that are primarily endophagic and endophilic. While these control measures have resulted in a substantial decline in malaria cases and continue to impact indoor transmission, the importance of alternative vectors for malaria transmission has been largely neglected. Anopheles coustani, an understudied vector of malaria, is a species previously thought to exhibit mostly zoophilic behavior. However, recent studies from across Africa bring to light the contribution of this and ecologically similar anopheline species to human malaria transmission. Like many of these understudied species, An. coustani has greater anthropophilic tendencies than previously appreciated, is often both endophagic and exophagic, and carries Plasmodium falciparum sporozoites. These recent developments highlight the need for more studies throughout the geographic range of this species and the potential need to control this vector. The aim of this study was to explore the genetic variation of An. coustani mosquitoes and the potential of this Anopheles species to contribute to malaria parasite transmission in high transmission settings in Nchelenge District, Zambia, and the Kashobwe and Kilwa Health Zones in Haut-Katanga Province, the Democratic Republic of the Congo (DRC). Morphologically identified An. coustani specimens that were trapped outdoors in these study sites were analyzed by PCR and sequencing for species identification and blood meal sources, and malaria parasite infection was determined by ELISA and qPCR. Fifty specimens were confirmed to be An. coustani by the analysis of mitochondrial DNA cytochrome c oxidase subunit I (COI) and ribosomal internal transcribed spacer region 2 (ITS2). Further, maximum likelihood phylogenetic analysis of COI and ITS2 sequences revealed two distinct phylogenetic groups within this relatively small regional collection. Our findings indicate that both An. coustani groups have anthropophilic and exophagic habits and come into frequent contact with P. falciparum, suggesting that this potential alternative malaria vector might elude current vector controls in Northern Zambia and Southern DRC. This study sets the groundwork for more thorough investigations of bionomic characteristics and genetic diversity of An. coustani and its contribution to malaria transmission in these regions.


Sign in / Sign up

Export Citation Format

Share Document