scholarly journals The synergistic effect of chlorotoxin-mApoE in boosting drug-loaded liposomes across the BBB

2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Beatrice Formicola ◽  
Roberta Dal Magro ◽  
Carlos V. Montefusco-Pereira ◽  
Claus-Michael Lehr ◽  
Marcus Koch ◽  
...  

Abstract We designed liposomes dually functionalized with ApoE-derived peptide (mApoE) and chlorotoxin (ClTx) to improve their blood–brain barrier (BBB) crossing. Our results demonstrated the synergistic activity of ClTx-mApoE in boosting doxorubicin-loaded liposomes across the BBB, keeping the anti-tumour activity of the drug loaded: mApoE acts promoting cellular uptake, while ClTx promotes exocytosis of liposomes.

2002 ◽  
Vol 291 (3) ◽  
pp. 669-674 ◽  
Author(s):  
Mitsuru Ikeda ◽  
Abesh Kumar Bhattacharjee ◽  
Takeshi Kondoh ◽  
Tatsuya Nagashima ◽  
Norihiko Tamaki

2021 ◽  
Vol 18 ◽  
Author(s):  
Min Wang ◽  
Yingying Sun ◽  
Bingying Hu ◽  
Zhisheng He ◽  
Shanshan Chen ◽  
...  

Background : The research and development of drugs for the treatment of central nervous system diseases faces many challenges at present. One of the most important questions to be answered is, how does the drug cross the blood-brain barrier to get to the target site for pharmacological action. Fluoxetine is widely used in clinical antidepressant therapy. However, the mechanism by which fluoxetine passes through the BBB also remains unclear. Under physiological pH conditions, fluoxetine is an organic cation with a relatively small molecular weight (<500), which is in line with the substrate characteristics of organic cation transporters (OCTs). Therefore, this study aimed to investigate the interaction of fluoxetine with OCTs at the BBB and BBB-associated efflux transporters. This is of great significance for fluoxetine to better treat depression. Moreover, it can provide a theoretical basis for clinical drug combinations. Methods: In vitro BBB model was developed using human brain microvascular endothelial cells (hCMEC/D3), and the cellular accumulation was tested in the presence or absence of transporter inhibitors. In addition, an in vivo trial was performed in rats to investigate the effect of OCTs on the distribution of fluoxetine in the brain tissue. Fluoxetine concentration was determined by a validated UPLC-MS/MS method. Results: The results showed that amantadine (an OCT1/2 inhibitor) and prazosin (an OCT1/3 inhibitor) significantly decreased the cellular accumulation of fluoxetine (P <.001). Moreover, we found that N-methylnicotinamide (an OCT2 inhibitor) significantly inhibited the cellular uptake of 100 and 500 ng/mL fluoxetine (P <.01 and P <.05 respectively). In contrast, corticosterone (an OCT3 inhibitor) only significantly inhibited the cellular uptake of 1000 ng/mL fluoxetine (P <.05). The P-glycoprotein (P-gp) inhibitor, verapamil, and the multidrug resistance resistance-associated proteins (MRPs) inhibitor, MK571, significantly decreased the cellular uptake of fluoxetine. However, intracellular accumulation of fluoxetine was not significantly changed when fluoxetine was incubated with the breast cancer resistance protein (BCRP) inhibitor Ko143. Furthermore, in vivo experiments proved that corticosterone and prazosin significantly inhibited the brain-plasma ratio of fluoxetine at 5.5 h and 12 h, respectively. Conclusion: OCTs might play a significant role in the transport of fluoxetine across the BBB. In addition, P-gp, BCRP, and MRPs seemed not to mediate the efflux transport of fluoxetine.


Neurosurgery ◽  
1996 ◽  
Vol 38 (2) ◽  
pp. 348-354 ◽  
Author(s):  
Thomas C. Chen ◽  
Jasmina B. Mackic ◽  
Jasmina B. Mackic ◽  
J. Gordon McComb ◽  
Steven L. Giannotta ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 86
Author(s):  
Szilvia Veszelka ◽  
Mária Mészáros ◽  
Gergő Porkoláb ◽  
Anikó Szecskó ◽  
Nóra Kondor ◽  
...  

Nanosized drug delivery systems targeting transporters of the blood-brain barrier (BBB) are promising carriers to enhance the penetration of therapeutics into the brain. The expression of solute carriers (SLC) is high and shows a specific pattern at the BBB. Here we show that targeting ligands ascorbic acid, leucine and glutathione on nanoparticles elevated the uptake of albumin cargo in cultured primary rat brain endothelial cells. Moreover, we demonstrated the ability of the triple-targeted nanovesicles to deliver their cargo into midbrain organoids after crossing the BBB model. The cellular uptake was temperature- and energy-dependent based on metabolic inhibition. The process was decreased by filipin and cytochalasin D, indicating that the cellular uptake of nanoparticles was partially mediated by endocytosis. The uptake of the cargo encapsulated in triple-targeted nanoparticles increased after modification of the negative zeta potential of endothelial cells by treatment with a cationic lipid or after cleaving the glycocalyx with an enzyme. We revealed that targeted nanoparticles elevated plasma membrane fluidity, indicating the fusion of nanovesicles with endothelial cell membranes. Our data indicate that labeling nanoparticles with three different ligands of multiple transporters of brain endothelial cells can promote the transfer and delivery of molecules across the BBB.


Sign in / Sign up

Export Citation Format

Share Document