scholarly journals Ferumoxytol-enhanced cardiovascular magnetic resonance detection of early stage acute myocarditis

Author(s):  
Yuko Tada ◽  
Atsushi Tachibana ◽  
Shahriar Heidary ◽  
Phillip C. Yang ◽  
Michael V. McConnell ◽  
...  

Abstract Background The diagnostic utility of cardiovascular magnetic resonance (CMR) is limited during the early stages of myocarditis. This study examined whether ferumoxytol-enhanced CMR (FE-CMR) could detect an earlier stage of acute myocarditis compared to gadolinium-enhanced CMR. Methods Lewis rats were induced to develop autoimmune myocarditis. CMR (3 T, GE Signa) was performed at the early- (day 14, n = 7) and the peak-phase (day 21, n = 8) of myocardial inflammation. FE-CMR was evaluated as % myocardial dephasing signal loss on gradient echo images at 6 and 24 h (6 h- & 24 h-FE-CMR) following the administration of ferumoxytol (300μmolFe/kg). Pre- and post-contrast T2* mapping was also performed. Early (EGE) and late (LGE) gadolinium enhancement was obtained after the administration of gadolinium-DTPA (0.5 mmol/kg) on day 14 and 21. Healthy rats were used as control (n = 6). Results Left ventricular ejection fraction (LVEF) was preserved at day 14 with inflammatory cells but no fibrosis seen on histology. EGE and LGE at day 14 both showed limited myocardial enhancement (EGE: 11.7 ± 15.5%; LGE: 8.7 ± 8.7%; both p = ns vs. controls). In contrast, 6 h-FE-CMR detected extensive myocardial signal loss (33.2 ± 15.0%, p = 0.02 vs. EGE and p < 0.01 vs. LGE). At day 21, LVEF became significantly decreased (47.4 ± 16.4% vs control: 66.2 ± 6.1%, p < 0.01) with now extensive myocardial involvement detected on EGE, LGE, and 6 h-FE-CMR (41.6 ± 18.2% of LV). T2* mapping also detected myocardial uptake of ferumoxytol both at day 14 (6 h R2* = 299 ± 112 s− 1vs control: 125 ± 26 s− 1, p < 0.01) and day 21 (564 ± 562 s− 1, p < 0.01 vs control). Notably, the myocardium at peak-phase myocarditis also showed significantly higher pre-contrast T2* (27 ± 5 ms vs control: 16 ± 1 ms, p < 0.001), and the extent of myocardial necrosis had a strong positive correlation with T2* (r = 0.86, p < 0.001). Conclusions FE-CMR acquired at 6 h enhance detection of early stages of myocarditis before development of necrosis or fibrosis, which could potentially enable appropriate therapeutic intervention.

2015 ◽  
Vol 16 (suppl 2) ◽  
pp. S150-S152 ◽  
Author(s):  
P Bazal ◽  
O-A Nastase ◽  
MS Vieira ◽  
A M Maceira Gonzalez ◽  
J Kowal ◽  
...  

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Marc Lee ◽  
Richard Lafountain ◽  
Juliet Varghese ◽  
Christopher Hummel ◽  
James Borchers ◽  
...  

Introduction: Athletic cardiac adaptation is associated with structural changes that can overlap with disease states, unnecessarily limiting sports participation. Cardiovascular magnetic resonance (CMR) is useful in athlete’s heart and provides myocardial tissue characterization by T1 and T2 mapping. Hypothesis: CMR in competitive athletes will show abnormal T1 and T2 mapping due to intense exercise induced myocardial edema that can overlap with myocarditis. Methods: CMR data including left ventricular ejection fraction (LVEF) and T1/T2 maps were collected using standardized protocols on a 1.5 T scanner and compared between competitive athletes (N = 18, 83% male, median age 20 years), clinical myocarditis (N = 42, 71% male, median age 23 years) and controls (N = 35, 86% male, median age 22 years) between 2016-2020. T2 values of <59 ms and native T1 <1080 ms were defined as normal per institutional data. Extracellular volume fraction (ECV) and late gadolinium enhancement (LGE) were compared between athlete and myocarditis groups. Results: Figure 1 (panel A) shows participating sport and indications for CMR in athletes. There were 11 athletes (61%) with elevated T2 values (>59 ms), of which 9 (82%) were without clinical myocarditis. Average T2, native T1, ECV, and LVEF are shown in panels B-E. T2 values were highest in myocarditis, followed by athletes and controls (p = 0.001). ECV was higher in myocarditis compared to athletes (p = 0.002). LGE was present in 8/18 athletes and 41/42 myocarditis patients. 6 athletes had follow-up CMR after a period of deconditioning, with 3 (50%) demonstrating an improvement in T2 values and LGE. Conclusions: To conclude, we demonstrate abnormalities on T2 mapping in athletes consistent with myocardial edema or inflammation. Changes in T2 may be related to intense training. Additional studies are required to prospectively evaluate athletes for normative T1 and T2 mapping values, relationship to training, and their correlation with LGE.


Author(s):  
Sorin Giusca ◽  
Grigorios Korosoglou ◽  
Moritz Montenbruck ◽  
Blaž Geršak ◽  
Arne Kristian Schwarz ◽  
...  

Background: Our goal was to evaluate the ability of cardiovascular magnetic resonance for detecting and predicting cardiac dysfunction in patients receiving cancer therapy. Left ventricular ejection fraction, global and regional strain utilizing fast-strain-encoded, T1 and T2 mapping, and cardiac biomarkers (troponin and BNP [brain natriuretic peptide]) were analyzed. METHODS: Sixty-one patients (47 with breast cancer, 11 with non-Hodgkin lymphoma, and 3 with Hodgkin lymphoma) underwent cardiovascular magnetic resonance scans at baseline and at regular intervals during 2 years of follow-up. The percentage of all left ventricular myocardial segments with strain ≤−17% (normal myocardium [%]) was analyzed. Clinical cardiotoxicity (CTX) and sub-CTX were defined according to standard measures. Results: Nine (15%) patients developed CTX, 26 (43%) had sub-CTX. Of the 35 patients with CTX or sub-CTX, 24 (69%) were treated with cardioprotective medications and showed recovery of cardiac function. The amount of normal myocardium (%) exhibited markedly higher accuracy for the detection of CTX and sub-CTX compared with left ventricular ejection fraction, T1, and T2 mapping as well as troponin I (Δareas under the curve=0.20, 0.24, and 0.46 for normal myocardium (%) versus left ventricular ejection fraction, troponin I, and T1 mapping, P <0.001 for all). In addition, normal myocardium (%) at baseline accurately identified patients with subsequent CTX ( P <0.001), which was not achieved by any other markers. Conclusions: Normal myocardium (%) derived by fast-strain-encoded cardiovascular magnetic resonance, is an accurate and sensitive tool that can establish cardiac safety in patients with cancer undergoing cardiotoxic chemotherapy not only for the early detection but also for the prediction of those at risk of developing CTX. REGISTRATION: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT03543228.


Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 156
Author(s):  
Jakub Lagan ◽  
Christien Fortune ◽  
David Hutchings ◽  
Joshua Bradley ◽  
Josephine H. Naish ◽  
...  

Cardiovascular magnetic resonance (CMR) is used to investigate suspected acute myocarditis, however most supporting data is retrospective and few studies have included parametric mapping. We aimed to investigate the utility of contemporary multiparametric CMR in a large prospective cohort of patients with suspected acute myocarditis, the impact of real-world variations in practice, the relationship between clinical characteristics and CMR findings and factors predicting outcome. 540 consecutive patients we recruited. The 113 patients diagnosed with myocarditis on CMR performed within 40 days of presentation were followed-up for 674 (504–915) days. 39 patients underwent follow-up CMR at 189 (166–209) days. CMR provided a positive diagnosis in 72% of patients, including myocarditis (40%) and myocardial infarction (11%). In multivariable analysis, male sex and shorter presentation-to-scan interval were associated with a diagnosis of myocarditis. Presentation with heart failure (HF) was associated with lower left ventricular ejection fraction (LVEF), higher LGE burden and higher extracellular volume fraction. Lower baseline LVEF predicted follow-up LV dysfunction. Multiparametric CMR has a high diagnostic yield in suspected acute myocarditis. CMR should be performed early and include parametric mapping. Patients presenting with HF and reduced LVEF require closer follow-up while those with normal CMR may not require it.


2019 ◽  
Vol 20 (9) ◽  
pp. 1059-1069 ◽  
Author(s):  
Sören J Backhaus ◽  
Thomas Stiermaier ◽  
Torben Lange ◽  
Amedeo Chiribiri ◽  
Johannes Uhlig ◽  
...  

AbstractAimsThe exact pathophysiology of Takotsubo syndrome (TTS) remains not fully understood with most studies focussing on ventricular pathology. Since atrial involvement may have a significant role, we assessed the diagnostic and prognostic potential of atrial cardiovascular magnetic resonance feature tracking (CMR-FT) in TTS.Methods and resultsThis multicentre study recruited 152 TTS patients who underwent CMR on average within 3 days after hospitalization. Reservoir [total strain εs and peak positive strain rate (SR) SRs], conduit (passive strain εe and peak early negative SRe), and booster pump function (active strain εa and peak late negative SRa) were assessed in a core laboratory. Results were compared with 21 control patients with normal biventricular function. A total of 20 patients underwent follow-up CMR (median 3.5 months, interquartile range 3–5). All patients were approached for general follow-up. Left atrial (LA) but not right atrial (RA) reservoir and conduit function were impaired during the acute phase (εs: P = 0.043, εe: P < 0.001, SRe: P = 0.047 vs. controls) and recovered until follow-up (εs: P < 0.001, SRs: P = 0.04, εe: P = 0.001, SRe: P = 0.04). LA and RA booster pump function were increased in the acute setting (LA-εa: P = 0.045, SRa: P = 0.002 and RA-εa: P = 0.004, SRa: P = 0.002 vs. controls). LA-εs predicted mortality [hazard ratio 1.10, 95% confidence interval (CI) 1.01–1.20; P = 0.037] irrespectively of established cardiovascular risk factors (P = 0.019, multivariate analysis) including left ventricular ejection fraction (LVEF) (area under the curve 0.71, 95% CI 0.55–0.86, P = 0.048).ConclusionTTS pathophysiology comprises transient impairments in LA reservoir and conduit functions and enhanced bi-atrial active booster pump functions. Atrial CMR-FT may evolve as a superior marker of adverse events over and above established parameters such as LVEF and atrial volume.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
C Alderighi ◽  
A Baritussio ◽  
O Ozden Tok ◽  
M Perazzolo Marra ◽  
S Iliceto ◽  
...  

Abstract Background Clinically manifest cardiac sarcoidosis (CS) has a prevalence of 5%, but is more frequent in autoptic series (25%). Diagnosis is multiparametric and relies on clinical criteria and imaging findings, although a certain diagnosis, especially in the case of isolated CS (ICS), can only be based on endomyocardial biopsy. Cardiovascular magnetic resonance (CMR) has a comprehensive role in the assessment of CS: left ventricular (LV) dysfunction and extent of late gadolinium enhancement (LGE)are important predictors of prognosis, T2 mapping provides information on disease activity and global longitudinal strain (GLS) analysis can uncover subclinical LV impairment. Purpose To assess the prevalence of CS by CMR in patients with biopsy-proven extracardiacsarcoidosis (ECS); to describe the imaging characteristics of patients with ECS and those with high clinical suspicionof ICS; to investigate the contribution of more recent techniques to the diagnosis of CS alongside traditional LGE assessment. Methods We retrospectively enrolled 84 patients (66% males, mean age 59±13 years) referred to our centreforsuspected CS (biopsy-proven ECS, n=61; clinical presentation suggestive of CS,, n=23). CMR was performed on a 1.5T scanner, with a protocol comprehensive of biventricular functional assessment and post-contrast images; T2-STIR images (n=30), native myocardial T1 mapping (n=24) and T2 mapping (n=19) were also performed in selected patients. Tissue tracking analysis was perfomed in all patients using a dedicated software. Results Based on CMR findings, 35 patients (42%) with ECS did not show cardiac involvement (SS), 26 (31%) showed both cardiac and systemic involvement (CS-SS) and 23 (27%) had evidence of ICS (ICS). 43% of patients had history of arrhythmias, but life-threatening tachyarrhythmiaswere more frequent in patients with CS (p=0.02).Patients with CS had significantly lower LVEF (p&lt;0,01), larger LV volumes (p&lt;0,01) and greater LV mass (p&lt;0,01). GLS values were impaired in all the groups but significantly more in patients with CS (p&lt;0,01). With regards to LGE distribution, ICS patients showed a higher number of segments involved (p=0,011) as compared to CS patients. T2-STIRimages were positive in 3 out of 30 patients; T2 mapping detected myocardial oedema in 1 patient with negative T2- STIR and was positive in 7 who did not undergo traditional oedema evaluation. T1 mapping mainly confirmed the results provided by LGE, but was altered in 1 patient who could not receive gadolinium. Conclusions CMR findings consistent with CS were found in 49 patients referred for suspected CS. Patients with cardiac involvement, particularly if isolated, had significantly lower LVEF, greater LV volumes and more impaired GLS. Patients with SS, despite a normal LV function, showed mildly impaired GLS, subtending subclinical cardiac involvement. Funding Acknowledgement Type of funding source: None


Circulation ◽  
2007 ◽  
Vol 115 (14) ◽  
pp. 1876-1884 ◽  
Author(s):  
M.A. Tanner ◽  
R. Galanello ◽  
C. Dessi ◽  
G.C. Smith ◽  
M.A. Westwood ◽  
...  

Background— Cardiac complications secondary to iron overload are the leading cause of death in β-thalassemia major. Approximately two thirds of patients maintained on the parenteral iron chelator deferoxamine have myocardial iron loading. The oral iron chelator deferiprone has been demonstrated to remove myocardial iron, and it has been proposed that in combination with deferoxamine it may have additional effect. Methods and Results— Myocardial iron loading was assessed with the use of myocardial T2* cardiovascular magnetic resonance in 167 patients with thalassemia major receiving standard maintenance chelation monotherapy with subcutaneous deferoxamine. Of these patients, 65 with mild to moderate myocardial iron loading (T2* 8 to 20 ms) entered the trial with continuation of subcutaneous deferoxamine and were randomized to receive additional oral placebo (deferoxamine group) or oral deferiprone 75 mg/kg per day (combined group). The primary end point was the change in myocardial T2* over 12 months. Secondary end points of endothelial function (flow-mediated dilatation of the brachial artery) and cardiac function were also measured with cardiovascular magnetic resonance. There were significant improvements in the combined treatment group compared with the deferoxamine group in myocardial T2* (ratio of change in geometric means 1.50 versus 1.24; P =0.02), absolute left ventricular ejection fraction (2.6% versus 0.6%; P =0.05), and absolute endothelial function (8.8% versus 3.3%; P =0.02). There was also a significantly greater improvement in serum ferritin in the combined group (−976 versus −233 μg/L; P <0.001). Conclusions— In comparison to the standard chelation monotherapy of deferoxamine, combination treatment with additional deferiprone reduced myocardial iron and improved the ejection fraction and endothelial function in thalassemia major patients with mild to moderate cardiac iron loading.


2021 ◽  
Vol 22 (Supplement_2) ◽  
Author(s):  
J Gavara ◽  
V Marcos-Garces ◽  
C Rios-Navarro ◽  
MP Lopez-Lereu ◽  
JV Monmeneu ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – EU funding. Main funding source(s): This work was supported by “Instituto de Salud Carlos III” and “Fondos Europeos de Desarrollo Regional FEDER” Background. Cardiovascular magnetic resonance (CMR) is the best tool for left ventricular ejection fraction (LVEF) quantification, but as yet the prognostic value of sequential LVEF assessment for major adverse cardiac event (MACE) prediction after ST-segment elevation myocardial infarction (STEMI) is uncertain. Purpose. We explored the prognostic impact of sequential assessment of CMR-derived LVEF after STEMI to predict subsequent MACE. Methods. We recruited 1036 STEMI patients in a large multicenter registry. LVEF (reduced [r]: &lt;40%; mid-range [mr]: 40-49%; preserved [p]: ≥50%) was sequentially quantified by CMR at 1 week and after &gt;3 months of follow-up. MACE was regarded as cardiovascular death or re-admission for acute heart failure after follow-up CMR. Results. During a 5.7-year mean follow-up, 82 MACE (8%) were registered. The MACE rate was higher only in patients with LVEF &lt; 40% at follow-up CMR (r-LVEF 22%, mr-LVEF 7%, p-LVEF 6%; p-value &lt; 0.001). Based on LVEF dynamics from 1-week to follow-up CMR, incidence of MACE was 5% for sustained LVEF³40% (n = 783), 13% for improved LVEF (from &lt;40 to ³40%, n = 96), 21% for worsened LVEF (from ³40% to &lt;40%, n = 34) and 22% for sustained LVEF &lt;40% (n = 100), p-value &lt; 0.001. Using a Markov approach that considered all studies performed, transitions towards improved LVEF predominated and only r-LVEF (at any time assessed) was significantly related to higher incidence of subsequent MACE. Conclusions. LVEF constitutes a pivotal CMR index for simple and dynamic post-STEMI risk stratification. Detection of reduced LVEF (&lt;40%) by CMR at any time during follow-up identifies a small subset of patients at high risk of subsequent events.


Sign in / Sign up

Export Citation Format

Share Document