scholarly journals Exploring the effects of deep brain stimulation and vision on tremor in Parkinson’s disease - benefits from objective methods

Author(s):  
Per-Anders Fransson ◽  
Maria H. Nilsson ◽  
Diederick C. Niehorster ◽  
Marcus Nyström ◽  
Stig Rehncrona ◽  
...  

Abstract Background Tremor is a cardinal symptom of Parkinson’s disease (PD) that may cause severe disability. As such, objective methods to determine the exact characteristics of the tremor may improve the evaluation of therapy. This methodology study aims to validate the utility of two objective technical methods of recording Parkinsonian tremor and evaluate their ability to determine the effects of Deep Brain Stimulation (DBS) of the subthalamic nucleus and of vision. Methods We studied 10 patients with idiopathic PD, who were responsive to L-Dopa and had more than 1 year use of bilateral subthalamic nucleus stimulation. The patients did not have to display visible tremor to be included in the study. Tremor was recorded with two objective methods, a force platform and a 3 dimensional (3D) motion capture system that tracked movements in four key proximal sections of the body (knee, hip, shoulder and head). They were assessed after an overnight withdrawal of anti-PD medications with DBS ON and OFF and with eyes open and closed during unperturbed and perturbed stance with randomized calf vibration, using a randomized test order design. Results Tremor was detected with the Unified Parkinson’s Disease Rating Scale (UPDRS) in 6 of 10 patients but only distally (hands and feet) with DBS OFF. With the force platform and the 3D motion capture system, tremor was detected in 6 of 10 and 7 of 10 patients respectively, mostly in DBS OFF but also with DBS ON in some patients. The 3D motion capture system revealed that more than one body section was usually affected by tremor and that the tremor amplitude was non-uniform, but the frequency almost identical, across sites. DBS reduced tremor amplitude non-uniformly across the body. Visual input mostly reduced tremor amplitude with DBS ON. Conclusions Technical recording methods offer objective and sensitive detection of tremor that provide detailed characteristics such as peak amplitude, frequency and distribution pattern, and thus, provide information that can guide the optimization of treatments. Both methods detected the effects of DBS and visual input but the 3D motion system was more versatile in that it could detail the presence and properties of tremor at individual body sections.

2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Hector R. Martinez ◽  
Alexis Garcia-Sarreon ◽  
Carlos Camara-Lemarroy ◽  
Fortino Salazar ◽  
María L. Guerrero-González

Background. Body motion evaluation (BME) by markerless systems is increasingly being considered as an alternative to traditional marker-based technology because they are faster, simpler, and less expensive. They are increasingly used in clinical settings in patients with movement disorders; however, the wide variety of systems available makes results conflicting. Research Question. The objective of this study was to determine whether a markerless 3D motion capture system is a useful instrument to objectively differentiate between PD patients with DBS in On and Off states and controls and its correlation with the evaluation by means of MDS-UPDRS. Methods. Six PD patients who underwent deep brain stimulation (DBS) bilaterally in the subthalamic nucleus were evaluated using BME and the Unified Parkinson’s Disease Rating Scale (UPDRS-III) with DBS turned On and Off. BME of 16 different movements in six controls paired by age and sex was compared with that in PD patients with DBS in On and Off states. Results. A better performance in the BME was correlated with a lower UPDRS-III score. There was no statistically significant difference between patients in Off and On states of DBS regarding BME. However, some items such as left shoulder flexion (p=0.038), right shoulder rotation (p=0.011), and left trunk rotation (p=0.023) were different between Off patients and healthy controls. Significance. Kinematic data obtained with this markerless system could contribute to discriminate between PD patients and healthy controls. This emerging technology may help to clinically evaluate PD patients more objectively.


2009 ◽  
Vol 36 (S 02) ◽  
Author(s):  
J Gierthmühlen ◽  
P Arning ◽  
G Wasner ◽  
A Binder ◽  
J Herzog ◽  
...  

2019 ◽  
pp. 158-173

Background: Parkinson’s disease (PD) is a progressive neurodegenerative disorder caused by a dopamine deficiency that presents with motor symptoms. Visual disorders can occur concomitantly but are frequently overlooked. Deep brain stimulation (DBS) has been an effective treatment to improve tremors, stiffness and overall mobility, but little is known about its effects on the visual system. Case Report: A 75-year-old Caucasian male with PD presented with longstanding binocular diplopia. On baseline examination, the best-corrected visual acuity was 20/25 in each eye. On observation, he had noticeable tremors with an unsteady gait. Distance alternating cover test showed exophoria with a right hyperphoria. Near alternating cover test revealed a significantly larger exophoria accompanied by a reduced near point of convergence. Additional testing with a 24-2 Humphrey visual field and optical coherence tomography (OCT) of the nerve and macula were unremarkable. The patient underwent DBS implantation five weeks after initial examination, and the device was activated four weeks thereafter. At follow up, the patient still complained of intermittent diplopia. There was no significant change in the manifest refraction or prism correction. On observation, the patient had remarkably improved tremors with a steady gait. All parameters measured were unchanged. The patient was evaluated again seven months after device activation. Although vergence ranges at all distances were improved, the patient was still symptomatic for intermittent diplopia. OCT scans of the optic nerve showed borderline but symmetric thinning in each eye. All other parameters measured were unchanged. Conclusion: The case found no significant changes on ophthalmic examination after DBS implantation and activation in a patient with PD. To the best of the authors’ knowledge, there are no other cases in the literature that investigated the effects of DBS on the visual system pathway in a patient with PD before and after DBS implantation and activation.


Sign in / Sign up

Export Citation Format

Share Document