scholarly journals Walking with robot-generated haptic forces in a virtual environment: a new approach to analyze lower limb coordination

Author(s):  
Gianluca U. Sorrento ◽  
Philippe S. Archambault ◽  
Joyce Fung

Abstract Background Walking with a haptic tensile force applied to the hand in a virtual environment (VE) can induce adaptation effects in both chronic stroke and non-stroke individuals. These effects are reflected in spatiotemporal outcomes such as gait speed. However, the concurrent kinematic changes occurring in bilateral lower limb coordination have yet to be explored. Methods Chronic stroke participants were stratified based on overground gait speed into lower functioning (LF < 0.8 m/s, N = 7) and higher functioning (HF ≥ 0.8 m/s, N = 7) subgroups. These subgroups and an age-matched control group (N = 14, CG) walked on a self-paced treadmill in a VE with either robot-generated haptic leash forces delivered to the hand and then released or with an instrumented cane. Walking in both leash (10 and 15 N) and cane conditions were compared to pre-force baseline values to evaluate changes in lower limb coordination outcomes. Results All groups showed some kinematic changes in thigh, leg and foot segments when gait speed increased during force and post-force leash as well as cane walking. These changes were also reflected in intersegmental coordination and 3D phase diagrams, which illustrated increased intersegmental trajectory areas (p < 0.05) and angular velocity. These increases could also be observed when the paretic leg transitions from stance to swing phases while walking with the haptic leash. The Sobolev norm values accounted for both angular position and angular velocity, providing a single value for potentially quantifying bilateral (i.e. non-paretic vs paretic) coordination during walking. These values tended to increase (p < 0.05) proportionally for both limbs during force and post-force epochs as gait speed tended to increase. Conclusions Individuals with chronic stroke who increased their gait speed when walking with tensile haptic forces and immediately after force removal, also displayed moderate concurrent changes in lower limb intersegmental coordination patterns in terms of angular displacement and velocity. Similar results were also seen with cane walking. Although symmetry was less affected, these findings appear favourable to the functional recovery of gait. Both the use of 3D phase diagrams and assigning Sobolev norm values are potentially effective for detecting and quantifying these coordination changes.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Marie-Hélène Milot ◽  
Sylvie Nadeau ◽  
Denis Gravel ◽  
Daniel Bourbonnais

Background. Limited improvement in gait performance has been noted after training despite a significant increase in strength of the affected lower-limb muscles after stroke. A mismatch between the training program and the requirements of gait could explain this finding. Objective. To compare the impact of a training program, matching the requirements of the muscle groups involved in the energy generation of gait, to a control intervention, on gait performance and strength. Methods. 30 individuals with chronic stroke were randomly assigned into two groups (n = 15), each training three times/week for six weeks. The experimental group trained the affected plantarflexors, hip flexors, and extensors, while the control group trained the upper-limb muscles. Baseline and posttraining values of gait speed, positive power (muscles’ concentric action during gait), and strength were retained and compared between groups. Results. After training, both groups showed a similar and significant increase in gait speed, positive power of the hip muscles, and plantarflexors strength. Conclusion. A training program targeting the lower-limb muscles involved in the energy generation of gait did not lead to a greater improvement in gait performance and strength than a training program of the upper-limb muscles. Attending the training sessions might have been a sufficient stimulus to generate gains in the control group.


2016 ◽  
Vol 48 ◽  
pp. 1-5 ◽  
Author(s):  
Shinya Ogaya ◽  
Akira Iwata ◽  
Yumi Higuchi ◽  
Satoshi Fuchioka

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Denise M. Peters ◽  
Julius Fridriksson ◽  
Jessica D. Richardson ◽  
Jill C. Stewart ◽  
Chris Rorden ◽  
...  

Background. Structural integrity of the ipsilesional corticospinal tract (CST) is important for upper limb motor recovery after stroke. However, additional neuromechanisms associated with motor function poststroke are less well understood, especially regarding the lower limb. Objective. To investigate the neural basis of upper/lower limb motor deficits poststroke by correlating measures of motor function with diffusion tensor imaging-derived indices of white matter integrity (fractional anisotropy (FA), mean diffusivity (MD)) in primary and secondary motor tracts/structures. Methods. Forty-three individuals with chronic stroke (time poststroke, 64.4 ± 58.8 months) underwent a comprehensive motor assessment and MRI scanning. Correlation and multiple regression analyses were performed to examine relationships between FA/MD in a priori motor tracts/structures and motor function. Results. FA in the ipsilesional CST and red nucleus (RN) was positively correlated with motor function of both the affected upper and lower limb ( r = 0.36 ‐ 0.55 , p ≤ 0.01 ), while only ipsilesional RN FA was associated with gait speed ( r = 0.50 ). Ipsilesional CST FA explained 37.3% of the variance in grip strength ( p < 0.001 ) and 31.5% of the variance in Arm Motricity Index ( p = 0.004 ). Measures of MD were not predictors of motor performance. Conclusions. Microstructural integrity of the ipsilesional CST is associated with both upper and lower limb motor function poststroke, but appears less important for gait speed. Integrity of the ipsilesional RN was also associated with motor performance, suggesting increased contributions from secondary motor areas may play a role in supporting chronic motor function and could become a target for interventions.


Author(s):  
Benjamin Dutaillis ◽  
David A Opar ◽  
Todd Pataky ◽  
Ryan G Timmins ◽  
Jack T Hickey ◽  
...  
Keyword(s):  

2018 ◽  
Vol 43 (2) ◽  
pp. 140-147 ◽  
Author(s):  
Tariq A Kwaees ◽  
Jim Richards ◽  
Gill Rawlinson ◽  
Charalambos Panayiotou Charalambous ◽  
Ambreen Chohan

Background: Use of proprioceptive knee braces to control symptomology by altering neuromuscular control mechanisms has been shown in patellofemoral pain. Although their potential in patients with knee osteoarthritis is vast, little research has examined their efficacy. Objectives: This study examines the effect of a proprioceptive knee brace on lower limb kinematics and kinetics in healthy participants and in participants with OA. Methods: Thirteen healthy participants were asked to perform a 10-cm step-down task with and without a proprioceptive brace. Data were collected using a 10-camera Qualisys system. Individuals with osteoarthritis completed the Knee injury and Osteoarthritis Outcome Score before and after 4 weeks of intervention. Results: During step-down reductions in knee maximum internal rotation, transverse range of movement, transverse plane angular velocity and maximum internal rotation angular velocity was seen. Ankle plantar flexion and inversion angular velocity decreased while inversion and maximum supination angular velocity increased. Improvements in Knee injury and Osteoarthritis Outcome Score were noted across all parameters with brace use. Conclusion: Positive changes in kinematic variables in multiple planes can be achieved with proprioceptive bracing alongside improved patient outcome. These changes occur at the knee but analysis of other weight bearing joints should not be overlooked in future studies. This study supports the concept of neuromuscular reinforcement and re-education through proprioceptive bracing and its application in the management in knee osteoarthritis. Clinical relevance Proprioception can alter symptoms and biomechanics embraced and adjacent lower limb joints. The results of this study highlights the potential uses of non-mechanical bracing in the treatment of osteoarthritis and other potential to bridge the osteoarthritis treatment gap. Furthermore, large-scale research is needed to match disease subset to brace type.


2021 ◽  
pp. 105527
Author(s):  
Raiff Simplicio da Silva ◽  
Mikhail Santos Cerqueira ◽  
Daniel Germano Maciel ◽  
Stephano Tomaz da Silva ◽  
Marianna Celeste Cordeiro De Figueiredo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document