scholarly journals Development of real-time and lateral flow strip reverse transcription recombinase polymerase Amplification assays for rapid detection of peste des petits ruminants virus

2017 ◽  
Vol 14 (1) ◽  
Author(s):  
Yang Yang ◽  
Xiaodong Qin ◽  
Yiming Song ◽  
Wei Zhang ◽  
Gaowei Hu ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Jia Xie ◽  
Xiaohan Yang ◽  
Lei Duan ◽  
Keyi Chen ◽  
Pan Liu ◽  
...  

Hand, foot, and mouth disease (HFMD) is a common infectious disease affecting mainly children under 5 years of age. Coxsackievirus A6 (CVA-6), a major causative pathogen of HFMD, has caused outbreaks in recent years. Currently, no effective vaccine or antiviral treatments are available. In this study, one-step reverse-transcription recombinase polymerase amplification (RT-RPA), combined with a disposable lateral flow strip (LFS) assay, was developed to detect CVA-6. This assay can be performed in less than 35 min at 37°C without expensive instruments, and the result can be observed directly with the naked eye. The sensitivity of the RT-RPA-LFS was 10 copies per reaction, which was comparable to that of the conventional real-time quantitative polymerase chain reaction (qPCR) assays. Moreover, the assay specificity was 100%. The clinical performance of the RT-RPA-LFS assay was evaluated using 142 clinical samples, and the coincidence rate between RT-RPA-LFS and qPCR was 100%. Therefore, our RT-RPA-LFS assay provides a simple and rapid approach for point-of-care CVA-6 diagnosis.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Xin-na Li ◽  
Xin-xin Shen ◽  
Ming-hui Li ◽  
Ju-ju Qi ◽  
Rui-huan Wang ◽  
...  

Abstract Background Enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are the two main etiological agents of Hand, Foot and Mouth Disease (HFMD). Simple and rapid detection of EV71 and CA16 is critical in resource-limited settings. Methods Duplex real time reverse-transcription recombinase aided amplification (RT-RAA) assays incorporating competitive internal amplification controls (IAC) and visible RT-RAA assays combined with lateral flow strip (LFS) for detection of EV71 and CA16 were developed respectively. Duplex real time RT-RAA assays were performed at 42 °C within 30 min using a portable real-time fluorescence detector, while LFS RT-RAA assays were performed at 42 °C within 30 min in an incubator. Recombinant plasmids containing conserved VP1 genes were used to analyze the sensitivities of these two methods. A total of 445 clinical specimens from patients who were suspected of being infected with HFMD were used to evaluate the performance of the assays. Results The limit of detection (LoD) of the duplex real time RT-RAA for EV71 and CA16 was 47 copies and 38 copies per reaction, respectively. The LoD of the LFS RT-RAA for EV71 and CA16 were both 91 copies per reaction. There was no cross reactivity with other enteroviruses. Compared to reverse transcription-quantitative PCR (RT-qPCR), the clinical diagnostic sensitivities of the duplex real time RT-RAA assay were 92.3% for EV71 and 99.0% for CA16, and the clinical diagnostic specificities were 99.7 and 100%, respectively. The clinical diagnostic sensitivities of the LFS RT-RAA assay were 90.1% for EV71 and 94.9% for CA16, and the clinical diagnostic specificities were 99.7 and 100%, respectively. Conclusions The developed duplex real time RT-RAA and LFS RT-RAA assays for detection of EV71 and CA16 are potentially suitable in primary clinical settings.


2020 ◽  
Author(s):  
Jinfeng Wang ◽  
Ruiwen Li ◽  
Xiaoxia Sun ◽  
Libing Liu ◽  
Xuepiao Hao ◽  
...  

Abstract Background: Mycoplasmal pneumonia is an important infectious disease that threatens sheep and goat production worldwide, and Mycoplasma ovipneumoniae is one of major etiological agent causing mycoplasmal pneumonia. Recombinase polymerase amplification (RPA) is an isothermal nucleic acid amplification technique, and RPA-based diagnostic assays have been described for the detection of different types of pathogens. Results: The RPA assays using real-time fluorescence detection (real-time RPA) and lateral flow strip detection (LFS RPA) were developed to detect M. ovipneumoniae targeting a conserved region of the 16S rRNA gene. Real-time RPA was performed in a portable florescence scanner at 39 °C for 20 min. LFS RPA was performed in a portable metal bath incubator at 39 °C for 15 min, and the amplicons were visualized with the naked eyes within 5 min on the lateral flow strip. Both assays were highly specific for M. ovipneumoniae , as there were no cross-reactions with other microorganisms tested, especially the pathogens involved in respiratory complex and other mycoplasmas frequently identified in ruminant s . The limit of detection of LFS RPA assay was 1.0×10 1 copies per reaction using a recombinant plasmid containing target gene as template, which is 10 times lower than the limit of detection of the real-time RPA and real-time PCR assays. The RPA assays were further validated on 111 clinical sheep nasal swab and fresh lung samples, and M. ovipneumoniae DNA was detected in 29 samples in the real-time RPA, 31 samples in the LFS RPA and 32 samples in the real-time PCR assay. Compared to real-time PCR, the real-time RPA and LFS RPA showed diagnostic specificity of 100% and 98.73%, diagnostic sensitivity of 90.63% and 93.75%, and a kappa coefficient of 0.932 and 0.934, respectively. Conclusions: The developed real-time RPA and LFS RPA assays provide the attractive and promising tools for rapid, convenient and reliable detection of M. ovipneumoniae , especially in resource-limited settings.


2021 ◽  
Vol 59 (2) ◽  
pp. 167-171
Author(s):  
Yao-Dong Wu ◽  
Qi-Qi Wang ◽  
Meng Wang ◽  
Hany M. Elsheikha ◽  
Xin Yang ◽  
...  

Haemonchosis remains a significant problem in small ruminants. In this study, the assay of recombinase polymerase amplification (RPA) combined with the lateral flow strip (LFS-RPA) was established for the rapid detection of <i>Haemonchus contortus</i> in goat feces. The assay used primers and a probe targeting a specific sequence in the ITS-2 gene. We compared the performance of the LFS-RPA assay to a PCR assay. The LFS-RPA had a detection limit of 10 fg DNA, which was 10 times less compared to the lowest detection limit obtained by PCR. Out of 24 goat fecal samples, LFS-RPA assay detected <i>H. contortus</i> DNA with 95.8% sensitivity, compared to PCR, 79.1% sensitivity. LFS-RPA assay did not detect DNA from other related helminth species and demonstrated an adequate tolerance to inhibitors present in the goat feces. Taken together, our results suggest that LFS-RPA assay had a high diagnostic accuracy for the rapid detection of <i>H. contortus</i> and merits further evaluation.


Sign in / Sign up

Export Citation Format

Share Document