coxsackievirus a6
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 11)

H-INDEX

31
(FIVE YEARS 0)

2022 ◽  
Vol 12 ◽  
Author(s):  
Fenglan He ◽  
Jia Rui ◽  
Zhiqiang Deng ◽  
Yanxia Zhang ◽  
Ke Qian ◽  
...  

After the first national-scale outbreak of Hand, foot, and mouth disease (HFMD) in China, a national surveillance network was established. Here we described the epidemiology and pathogenic profile of HFMD and the impact of EV-A71 vaccination on pathogen spectrum of enteroviruses in the southeastern Chinese city of Nanchang during 2010–2019. A total of 7,951 HFMD cases from sentinel hospitals were included, of which 4,800 EV-positive cases (60.4%) were identified by real-time RT-PCR. During 2010–2012, enterovirus 71 (EV-A71) was the main causative agent of HFMD, causing 63.1% of cases, followed by 19.3% cases associated with coxsackievirus A16 (CV-A16). Since 2013, the proportion of other enteroviruses has increased dramatically, with the sub genotype D3 strain of Coxsackievirus A6 (CV-A6) replacing the dominance of EV-A71. These genetically diverse native strains of CV-A6 have co-transmitted and co-evolved in Nanchang. Unlike EV-A71 and CV-A16, most CV-A6 infections were concentrated in autumn and winter. The incidence of EV-A71 infection negatively correlated with EV-A71 vaccination (r = −0.990, p = 0.01). And severe cases sharply declined as the promotion of EV-A71 vaccines. After 2-year implementation of EV-A71 vaccination, EV-A71 is no longer detected from the reported HFMD cases in Nanchang. In conclusion, EV-A71 vaccination changed the pattern of HFMD epidemic, and CV-A6 replaced the dominance of EV-A71 over time.



2021 ◽  
Vol 27 (9) ◽  
pp. 2261-2268
Author(s):  
Everlyn Kamau ◽  
Dung Nguyen ◽  
Cristina Celma ◽  
Soile Blomqvist ◽  
Peter Horby ◽  
...  


Author(s):  
Hongbo Liu ◽  
Ming Zhang ◽  
Changzeng Feng ◽  
Shanri Cong ◽  
Danhan Xu ◽  
...  

Coxsackievirus A6 (CVA6) is a key pathogen causing hand, foot and mouth disease (HFMD). However, there are currently no specific antiviral drugs or vaccines for treating infections caused by CVA6. In this study, human rhabdomyosarcoma (RD), African green monkey kidney (Vero), and human embryonic lung diploid fibroblast (KMB17) cells were used to isolate CVA6 from 327 anal swab and fecal samples obtained during HFMD monitoring between 2009 and 2017. The VP1 genes of the isolates were sequenced and genotyped, and the biological characteristics of the representative CVA6 strains were analyzed. A total of 37 CVA6 strains of the D3 gene subtypes were isolated from RD cells, all of which belonged to the epidemic strains in mainland China. Using the adaptive culture method, 10 KMB17 cell-adapted strains were obtained; however, no Vero cell-adapted strains were acquired. Among the KMB17 cell-adapted strains, only KYN-A1205 caused disease or partial death in suckling mice, and its virulence was stronger than its RD cell-adapted strain. The pathogenic KYN-A1205 strain caused strong tropism to the muscle tissue and led to pathological changes, including muscle necrosis and nuclear fragmentation in the forelimb and hindlimb. Sequence analysis demonstrated that the KYN-A1205 strain exhibited multiple amino acid mutations after KMB17 cell adaptation. Moreover, it showed strong pathogenicity, good immunogenicity and genetic stability, and could be used as an experimental CVA6 vaccine candidate.



2021 ◽  
Vol 12 ◽  
Author(s):  
Zaixue Jiang ◽  
Yaozhong Zhang ◽  
Huayuan Lin ◽  
Qingqiu Cheng ◽  
Xiaomei Lu ◽  
...  

Coxsackievirus A6 (CVA6) is recognized as a major enterovirus type that can cause severe hand, foot, and mouth disease and spread widely among children. Vaccines and antiviral drugs may be developed more effectively based on a stable and easy-to-operate CVA6 mouse infection model. In this study, a wild CVA6-W strain was sub-cultured in newborn mice of different ages (in days), for adaptation. Therefore, a CVA6-A mouse-adapted strain capable of stably infecting the mice was generated, and a fatal model was built. As the result indicated, CVA6-A could infect the 10-day-old mice to generate higher levels of IFN-γ, IL-6, and IL-10. The mice infected with CVA6-A were treated with IFN-α1b at a higher dose, with complete protection. Based on this strain, an animal model with active immunization was built to evaluate antiviral protection by active immunization. The three-day-old mice were pre-immunized with inactivated CVA6 thereby generating IgM and IgG antibodies within 7 days that enabled complete protection of the pre-immunized mice following the CVA6 virus challenge. There were eight mutations in the genome of CVA6-A than in that of CVA6-W, possibly attributed to the virulence of CVA6 in mice. Briefly, the CVA6 infection model of the 10-day-old mice built herein, may serve as an applicable preclinical evaluation model for CVA6 antiviral drugs and vaccine study.



Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 882
Author(s):  
Susanne Baertl ◽  
Corinna Pietsch ◽  
Melanie Maier ◽  
Mario Hönemann ◽  
Sandra Bergs ◽  
...  

Enteroviruses are associated with various diseases accompanied by rare but severe complications. In recent years, outbreaks of enterovirus D68 and enterovirus A71 associated with severe respiratory infections and neurological complications have been reported worldwide. Since information on molecular epidemiology in respiratory samples is still limited, the genetic diversity of enteroviruses was retrospectively analysed over a 4-year period (2013–2016) in respiratory samples from paediatric patients. Partial viral major capsid protein gene (VP1) sequences were determined for genotyping. Enteroviruses were detected in 255 (6.1%) of 4187 specimens. Phylogenetic analyses of 233 (91.4%) strains revealed 25 different genotypes distributed to Enterovirus A (39.1%), Enterovirus B (34.3%), and Enterovirus D (26.6%). The most frequently detected genotypes were enterovirus D68 (26.6%), coxsackievirus A6 (15.9%), and enterovirus A71 (7.3%). Enterovirus D68 detections were associated with lower respiratory tract infections and increased oxygen demand. Meningitis/encephalitis and other neurological symptoms were related to enterovirus A71, while coxsackievirus A6 was associated with upper respiratory diseases. Prematurity turned out as a potential risk factor for increased oxygen demand during enterovirus infections. The detailed analysis of epidemiological and clinical data contributes to the non-polio enterovirus surveillance in Europe and showed high and rapidly changing genetic diversity of circulating enteroviruses, including different enterovirus D68 variants.



2021 ◽  
Author(s):  
Zhilei Zhao ◽  
Zhaolong Li ◽  
Chen Huan ◽  
Xin Liu ◽  
Wenyan Zhang

Sterile alpha motif and histidine-aspartic acid domain-containing protein 1 (SAMHD1) possess multiple biological activities such as virus restriction, innate immunity regulation, and autoimmunity. Our previous study demonstrated that SAMHD1 potently inhibits the replication of enterovirus 71 (EV71). In this study, we observed that SAMHD1 also restricts multiple enteroviruses (EVs) including Coxsackievirus A16 (CA16) and Enterovirus D68 (EVD68), but not Coxsackievirus A6 (CA6). Mechanistically, SAMHD1 competitively interacted with the same domain in VP1 that binds to VP2 of EV71 and EVD68, thereby interfering with the interaction between VP1 and VP2, and therefore viral assembly. Moreover, we showed that while the SAMHD1 T592A mutant maintained the EV71 inhibitory effect by attenuating the interaction between VP1 and VP2, the T592D mutant failed to. We also demonstrated that SAMHD1 could not inhibit CA6 because a different binding site is required for the SAMHD1 and VP1 interaction. Our findings reveal the mechanism of SAMHD1 inhibition of multiple EVs, and this could potentially be important for developing drugs against a broad range of EVs. Importance Enterovirus cause a wide variety of diseases, such as the hand-foot-and-mouth disease (HFMD), which is a severe public problem threatening children under 5 years. Therefore, identifying essential genes which restrict EV infection and exploring the underlying mechanisms is necessary to develop an effective strategy to inhibit EV infection. In this study, we report that host restrictive factor SAMHD1 has broad-spectrum antiviral activity against EV71, CA16 and EVD68 independent of its well-known dNTPase or RNase activity. Mechanistically, SAMHD1 restricts EVs by competitively interacting with the same domain in VP1 that binds to VP2 of EVs, thereby interfering with the interaction between VP1 and VP2, and therefore viral assembly. In contrast, we also demonstrated that SAMHD1 could not inhibit CA6 because a different binding site is required for the SAMHD1 and CA6 VP1 interaction. Our study reveals a novel mechanism for the SAMHD1 anti-EV replication activity.



Author(s):  
Sha-Sha Qian ◽  
Zhen-Ni Wei ◽  
Wei-Ping Jin Jie-Wu ◽  
Yan-Ping Zhou ◽  
Sheng-Li Meng ◽  
...  


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Si Xian Ho ◽  
Nyo Min ◽  
Emmerie Phaik Yen Wong ◽  
Chia Yin Chong ◽  
Justin Jang Hann Chu

AbstractWhile the underlying determinants are unclear, hand, foot and mouth disease (HFMD) presents a wide spectrum of clinical manifestations with varying severity in different individuals. Recently, many studies identified the human microbiome as a critical factor in the pathogenesis of various diseases. Therefore, we here investigated the ecological dynamics of the oral microbiome changes during the HFMD infection. After targeted enrichment of all known vertebrate viruses, the virome profiles of symptomatic and asymptomatic HFMD patients were examined and revealed to be significantly altered from those of healthy individuals, with nine discriminative viruses detected. Further characterization of the prokaryotic microbiome revealed an elevated level of Streptococcus sp. as the most important signature of the symptomatic HFMD cohort, positively correlating to the level of enterovirus A RNA. In addition, we found that while coxsackievirus A5 is detected in saliva RNA of all asymptomatic cases, coxsackievirus A6 dominates the majority of the symptomatic cohort.



2021 ◽  
Vol 12 ◽  
Author(s):  
Jia Xie ◽  
Xiaohan Yang ◽  
Lei Duan ◽  
Keyi Chen ◽  
Pan Liu ◽  
...  

Hand, foot, and mouth disease (HFMD) is a common infectious disease affecting mainly children under 5 years of age. Coxsackievirus A6 (CVA-6), a major causative pathogen of HFMD, has caused outbreaks in recent years. Currently, no effective vaccine or antiviral treatments are available. In this study, one-step reverse-transcription recombinase polymerase amplification (RT-RPA), combined with a disposable lateral flow strip (LFS) assay, was developed to detect CVA-6. This assay can be performed in less than 35 min at 37°C without expensive instruments, and the result can be observed directly with the naked eye. The sensitivity of the RT-RPA-LFS was 10 copies per reaction, which was comparable to that of the conventional real-time quantitative polymerase chain reaction (qPCR) assays. Moreover, the assay specificity was 100%. The clinical performance of the RT-RPA-LFS assay was evaluated using 142 clinical samples, and the coincidence rate between RT-RPA-LFS and qPCR was 100%. Therefore, our RT-RPA-LFS assay provides a simple and rapid approach for point-of-care CVA-6 diagnosis.



Sign in / Sign up

Export Citation Format

Share Document