scholarly journals Development of real-time reverse transcription recombinase polymerase amplification (RPA) for rapid detection of peste des petits ruminants virus in clinical samples and its comparison with real-time PCR test

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Yuanli Li ◽  
Lin Li ◽  
Xiaoxu Fan ◽  
Yanli Zou ◽  
Yongqiang Zhang ◽  
...  
PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246573
Author(s):  
Sandeep K. Gupta ◽  
Qing Deng ◽  
Tanushree B. Gupta ◽  
Paul Maclean ◽  
Joerg Jores ◽  
...  

Mycoplasma ovipneumoniae infects both sheep and goats causing pneumonia resulting in considerable economic losses worldwide. Current diagnosis methods such as bacteriological culture, serology, and PCR are time consuming and require sophisticated laboratory setups. Here we report the development of two rapid, specific and sensitive assays; an isothermal DNA amplification using recombinase polymerase amplification (RPA) and a real-time PCR for the detection of M. ovipneumoniae. The target for both assays is a specific region of gene WP_069098309.1, which encodes a hypothetical protein and is conserved in the genome sequences of ten publicly available M. ovipneumoniae strains. The RPA assay performed well at 39°C for 20 min and was combined with a lateral flow dipstick (RPA-LFD) for easy visualization of the amplicons. The detection limit of the RPA-LFD assay was nine genome copies of M. ovipneumoniae per reaction and was comparable to sensitivity of the real-time PCR assay. Both assays showed no cross-reaction with 38 other ovine and caprine pathogenic microorganisms and two parasites of ruminants, demonstrating a high degree of specificity. The assays were validated using bronchoalveolar lavage fluid and nasal swab samples collected from sheep. The positive rate of RPA-LFD (97.4%) was higher than the real-time PCR (95.8%) with DNA as a template purified from the clinical samples. The RPA assay was significantly better at detecting M. ovipneumoniae in clinical samples compared to the real-time PCR when DNA extraction was omitted (50% and 34.4% positive rate for RPA-LFD and real-time PCR respectively). The RPA-LFD developed here allows easy and rapid detection of M. ovipneumoniae infection without DNA extraction, suggesting its potential as a point-of-care test for field settings.


Author(s):  
Priyanka Singh Tomar ◽  
Sanjay Kumar ◽  
Sapan Patel ◽  
Jyoti S. Kumar

West Nile virus (WNV) causes West Nile fever and encephalitis worldwide. Currently, there are no effective drugs or vaccines available in the market to treat WNV infection in humans. Hence, it is of paramount importance to detect WNV early for the success of the disease control programs and timely clinical management in endemic areas. In the present paper, we report the development of real-time reverse transcription recombinase polymerase amplification (RT-RPA) assay for rapid and real-time detection of WNV targeting the envelope (env) gene of the virus. The RPA reaction was performed successfully at 39°C for 15 min in a real-time thermal cycler. The sensitivity of this assay was found similar to that of the quantitative real-time RT PCR (RT-qPCR) assay, which could detect 10 copies of the gene. The efficacy of the assay was evaluated with a panel of 110 WN suspected human samples showing the signs of retinitis, febrile illness and acute posterior uveitis. In comparison with RT-qPCR, RT-RPA showed a specificity of 100% (CI, 95.07–100%) and sensitivity of 96.15% (CI, 80.36–99.90%) with a negative (NPV) and positive predictive value (PPV) of 98.65 and 100%, respectively. The level of agreement between RT-RPA and reference RT-qPCR assay was shown to be very high. The turnaround time of real-time RPA assay is about 10-20 times faster than the RT-qPCR, which confirms its utility in the rapid and sensitive diagnosis of WNV infection. To the best of our knowledge, this is the first report which deals with the development of real-time RT-RPA assay for simple, rapid, sensitive, and specific detection of WNV in human clinical samples. The present RT-RPA assay proves to be a powerful tool that can be used for the rapid diagnosis of a large number of patient samples in endemic settings.


2000 ◽  
Vol 41 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Daniel Hardegger ◽  
David Nadal ◽  
Walter Bossart ◽  
Martin Altwegg ◽  
Fabrizio Dutly

2014 ◽  
Vol 197 ◽  
pp. 19-24 ◽  
Author(s):  
Luan Felipo Botelho-Souza ◽  
Alcione de Oliveira dos Santos ◽  
Lourdes Maria Borzacov ◽  
Eduardo Resende Honda ◽  
Juan Miguel Villalobos-Salcedo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document