scholarly journals Hemagglutinin stalk-based monoclonal antibody elicits broadly reactivity against group 1 influenza A virus

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Jingjin Huang ◽  
Nan Huang ◽  
Menglu Fan ◽  
Lingcai Zhao ◽  
Yan Luo ◽  
...  

Abstract Background Influenza virus remains a continuous and severe threat to public health worldwide, and its prevention and treatment have always been a major international issue. Because of its ability to evade immune surveillance through rapid antigenic drift and antigenic shift, broad-spectrum vaccines seem increasingly important. Methods A mAb named 3C12 from an immortalized hybrid cell was generated via immunizing mice with HA2 protein from A/chicken/Anhui/BRI99/2016 (AH/BRI99/16, H9N2) generated by prokaryotic expression. Then, its broad-spectrum activity was analyzed by WB and IFA. Next, the minimal linear epitope was identified via analyzing the reaction of a series of HA truncations with 3C12. Finally, the protective effects of 3C12 were evaluated in vitro and in vivo infection experiments. Results The mAb could react with the viruses of subtypes H1, H2, H5, H8, H9, H12, H13, H16, and HA protein of H18 in group 1, but failed to react with viruses in group 2. The minimal linear epitope targeted by the mAb was 433NAELLVL439 in full length of HA and localized in the C-helix region of HA2 (residue 95-101, HA2 numbering). What’s more, the mAb 3C12 inhibited H1, H2, H5, H8, H9, H12, H13 and H16 virus-replication in vitro and also has shown effectiveness in preventing and treating disease in mice challenged with lethal dose of AH/BRI99/16 (H9N2) virus in vivo. These results suggested that the broadly reactive anti-HA stem mAb 3C12 exhibited prophylactic and therapeutic efficacy. Conclusions Here, we have demonstrated that the linear epitope identified in this study could be a novel target for developing broad-spectrum influenza diagnostics or vaccine design, and the HA2-based monoclonal antibody is indeed a promising strategy for broad-spectrum protection against seasonal and pandemic influenza viruses.

2020 ◽  
Author(s):  
Jingjin Huang ◽  
Nan Huang ◽  
Menglu Fan ◽  
Lingcai Zhao ◽  
Yan Luo ◽  
...  

Abstract Background: Influenza virus remains a continuous and serious threat to public health worldwide, and its prevention and treatment have always been a major international issue. Because of its ability to evade immune surveillance through rapid antigenic drift and antigenic shift, broad-spectrum vaccines seem increasingly important. Methods: A mAb named 3C12 from an immortalized hybrid cell was generated via immunizing mice with HA2 protein from A/chicken/Anhui/BRI99/2016 (AH/BRI99/16, H9N2) generated by prokaryotic expression. Then, its broad-spectrum activity was analyzed by WB and IFA. Next, the minimal linear epitope was identified via analyzing the reaction of a series of HA truncations with 3C12. Finally, the protective effects of 3C12 were evaluated in vitro and in vivo infection experiments.Results: The mAb could react with the viruses of subtypes H1, H2, H5, H8, H9, H12, H13, H16, and HA protein of H18 in group 1, but failed to react with viruses in group 2. The minimal linear epitope targeted by the mAb was 433NAELLVL439 in full length of HA and localized in the C-helix region of HA2 (residue 95-101, HA2 numbering). What’s more, the mAb 3C12 inhibited H1, H2, H5, H8, H9, H12, H13 and H16 virus-replication in vitro and also has shown effectiveness in preventing and treating disease in mice challenged with lethal dose of AH/BRI99/16 (H9N2) virus in vivo. These results suggested that the broadly reactive anti-HA stem mAb 3C12 exhibited prophylactic and therapeutic efficacy.Conclusions: Here, we have demonstrated that the linear epitope identified in this study could be a novel target for developing broad-spectrum influenza diagnostics or vaccine design, and the HA2-based monoclonal antibody is indeed a promising strategy for broad-spectrum protection against seasonal and pandemic influenza viruses.


Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 167 ◽  
Author(s):  
Jun-Gyu Park ◽  
Chengjin Ye ◽  
Michael S. Piepenbrink ◽  
Aitor Nogales ◽  
Haifeng Wang ◽  
...  

Although seasonal influenza vaccines block most predominant influenza types and subtypes, humans still remain vulnerable to waves of seasonal and new potential pandemic influenza viruses for which no immunity may exist because of viral antigenic drift and/or shift. Previously, we described a human monoclonal antibody (hMAb), KPF1, which was produced in human embryonic kidney 293T cells (KPF1-HEK) with broad and potent neutralizing activity against H1N1 influenza A viruses (IAV) in vitro, and prophylactic and therapeutic activities in vivo. In this study, we produced hMAb KPF1 in tobacco plants (KPF1-Antx) and demonstrated how the plant-produced KPF1-Antx hMAb possesses similar biological activity compared with the mammalian-produced KPF1-HEK hMAb. KPF1-Antx hMAb showed broad binding to recombinant HA proteins and H1N1 IAV, including A/California/04/2009 (pH1N1) in vitro, which was comparable to that observed with KPF1-HEK hMAb. Importantly, prophylactic administration of KPF1-Antx hMAb to guinea pigs prevented pH1N1 infection and transmission in both prophylactic and therapeutic experiments, substantiating its clinical potential to prevent and treat H1N1 infections. Collectively, this study demonstrated, for the first time, a plant-produced influenza hMAb with in vitro and in vivo activity against influenza virus. Because of the many advantages of plant-produced hMAbs, such as rapid batch production, low cost, and the absence of mammalian cell products, they represent an alternative strategy for the production of immunotherapeutics for the treatment of influenza viral infections, including emerging seasonal and/or pandemic strains.


2020 ◽  
Author(s):  
Jun-Gyu Park ◽  
Chengjin Ye ◽  
Michael S. Piepenbrink ◽  
Aitor Nogales ◽  
Haifeng Wang ◽  
...  

AbstractAlthough seasonal influenza vaccines block most predominant influenza types and subtypes, humans still remain vulnerable to waves of seasonal and new potential pandemic influenza viruses for which no immunity may exist because of viral antigenic drift and/or shift, respectively. Previously, we have described a human monoclonal antibody (hMAb), KPF1, which was produced in human embryonic kidney 293T cells (KPF1-HEK) with broad and potent neutralizing activity against H1N1 influenza A viruses (IAV) in vitro, and prophylactic and therapeutic activities in vivo. In this study, we produced hMAb KPF1 in tobacco plants (KPF1-Antx) and demonstrate how the plant-produced KPF1-Antx hMAb possesses similar biological activity compared with the mammalian produced KPF1-HEK hMAb. KPF1-Antx hMAb shows broad binding to recombinant HA proteins and H1N1 IAV, including A/California/04/2009 (pH1N1) in vitro, that are comparable to those observed with KPF1-HEK hMAb. Importantly, prophylactic administration of KPF1-Antx hMAb to guinea pigs prevented pH1N1 infection and transmission in both prophylactic and therapeutic experiments, substantiating its clinical potential to prevent and treat H1N1 infections. Collectively, this study demonstrates, for the first time, that plant-produced influenza hMAbs have similar in vitro and in vivo biological properties to those produced in mammalian cells. Because of the many advantages of plant-produced hMAbs, such as rapid batch production, low cost, and the absence of mammalian cell products, they represent an alternative strategy for the production of immunotherapeutics for the treatment of influenza viral infections, including emerging seasonal and/or pandemic strains.


2020 ◽  
Vol 6 (35) ◽  
pp. eaba7910
Author(s):  
Shuofeng Yuan ◽  
Hin Chu ◽  
Jingjing Huang ◽  
Xiaoyu Zhao ◽  
Zi-Wei Ye ◽  
...  

Targeting a universal host protein exploited by most viruses would be a game-changing strategy that offers broad-spectrum solution and rapid pandemic control including the current COVID-19. Here, we found a common YxxØ-motif of multiple viruses that exploits host AP2M1 for intracellular trafficking. A library chemical, N-(p-amylcinnamoyl)anthranilic acid (ACA), was identified to interrupt AP2M1-virus interaction and exhibit potent antiviral efficacy against a number of viruses in vitro and in vivo, including the influenza A viruses (IAVs), Zika virus (ZIKV), human immunodeficiency virus, and coronaviruses including MERS-CoV and SARS-CoV-2. YxxØ mutation, AP2M1 depletion, or disruption by ACA causes incorrect localization of viral proteins, which is exemplified by the failure of nuclear import of IAV nucleoprotein and diminished endoplasmic reticulum localization of ZIKV-NS3 and enterovirus-A71-2C proteins, thereby suppressing viral replication. Our study reveals an evolutionarily conserved mechanism of protein-protein interaction between host and virus that can serve as a broad-spectrum antiviral target.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1171
Author(s):  
Yaron Drori ◽  
Jasmine Jacob-Hirsch ◽  
Rakefet Pando ◽  
Aharona Glatman-Freedman ◽  
Nehemya Friedman ◽  
...  

Influenza viruses and respiratory syncytial virus (RSV) are respiratory viruses that primarily circulate worldwide during the autumn and winter seasons. Seasonal surveillance has shown that RSV infection generally precedes influenza. However, in the last four winter seasons (2016–2020) an overlap of the morbidity peaks of both viruses was observed in Israel, and was paralleled by significantly lower RSV infection rates. To investigate whether the influenza A virus inhibits RSV, human cervical carcinoma (HEp2) cells or mice were co-infected with influenza A and RSV. Influenza A inhibited RSV growth, both in vitro and in vivo. Mass spectrometry analysis of mouse lungs infected with influenza A identified a two-wave pattern of protein expression upregulation, which included members of the interferon-induced protein with the tetratricopeptide (IFITs) family. Interestingly, in the second wave, influenza A viruses were no longer detectable in mouse lungs. In addition, knockdown and overexpression of IFITs in HEp2 cells affected RSV multiplicity. In conclusion, influenza A infection inhibits RSV infectivity via upregulation of IFIT proteins in a two-wave modality. Understanding the immune system involvement in the interaction between influenza A and RSV viruses will contribute to the development of future treatment strategies against these viruses.


2020 ◽  
Vol 94 (17) ◽  
Author(s):  
Jessica A. Belser ◽  
Xiangjie Sun ◽  
Nicole Brock ◽  
Claudia Pappas ◽  
Joanna A. Pulit-Penaloza ◽  
...  

ABSTRACT Low-pathogenicity avian influenza A(H9N2) viruses, enzootic in poultry populations in Asia, are associated with fewer confirmed human infections but higher rates of seropositivity compared to A(H5) or A(H7) subtype viruses. Cocirculation of A(H5) and A(H7) viruses leads to the generation of reassortant viruses bearing A(H9N2) internal genes with markers of mammalian adaptation, warranting continued surveillance in both avian and human populations. Here, we describe active surveillance efforts in live poultry markets in Vietnam in 2018 and compare representative viruses to G1 and Y280 lineage viruses that have infected humans. Receptor binding properties, pH thresholds for HA activation, in vitro replication in human respiratory tract cells, and in vivo mammalian pathogenicity and transmissibility were investigated. While A(H9N2) viruses from both poultry and humans exhibited features associated with mammalian adaptation, one human isolate from 2018, A/Anhui-Lujiang/39/2018, exhibited increased capacity for replication and transmission, demonstrating the pandemic potential of A(H9N2) viruses. IMPORTANCE A(H9N2) influenza viruses are widespread in poultry in many parts of the world and for over 20 years have sporadically jumped species barriers to cause human infection. As these viruses continue to diversify genetically and antigenically, it is critical to closely monitor viruses responsible for human infections, to ascertain if A(H9N2) viruses are acquiring properties that make them better suited to infect and spread among humans. In this study, we describe an active poultry surveillance system established in Vietnam to identify the scope of influenza viruses present in live bird markets and the threat they pose to human health. Assessment of a recent A(H9N2) virus isolated from an individual in China in 2018 is also reported, and it was found to exhibit properties of adaptation to humans and, importantly, it shows similarities to strains isolated from the live bird markets of Vietnam.


2016 ◽  
Vol 90 (23) ◽  
pp. 10936-10944 ◽  
Author(s):  
Xiangjie Sun ◽  
Jessica A. Belser ◽  
Joanna A. Pulit-Penaloza ◽  
Hui Zeng ◽  
Amanda Lewis ◽  
...  

ABSTRACTAvian influenza A H7 viruses have caused multiple outbreaks in domestic poultry throughout North America, resulting in occasional infections of humans in close contact with affected birds. In early 2016, the presence of H7N8 highly pathogenic avian influenza (HPAI) viruses and closely related H7N8 low-pathogenic avian influenza (LPAI) viruses was confirmed in commercial turkey farms in Indiana. These H7N8 viruses represent the first isolation of this subtype in domestic poultry in North America, and their virulence in mammalian hosts and the potential risk for human infection are largely unknown. In this study, we assessed the ability of H7N8 HPAI and LPAI viruses to replicatein vitroin human airway cells andin vivoin mouse and ferret models. Both H7N8 viruses replicated efficientlyin vitroandin vivo, but they exhibited substantial differences in disease severity in mammals. In mice, while the H7N8 LPAI virus largely remained avirulent, the H7N8 HPAI virus exhibited greater infectivity, virulence, and lethality. Both H7N8 viruses replicated similarly in ferrets, but only the H7N8 HPAI virus caused moderate weight loss, lethargy, and mortality. The H7N8 LPAI virus displayed limited transmissibility in ferrets placed in direct contact with an inoculated animal, while no transmission of H7N8 HPAI virus was detected. Our results indicate that the H7N8 avian influenza viruses from Indiana are able to replicate in mammals and cause severe disease but with limited transmission. The recent appearance of H7N8 viruses in domestic poultry highlights the need for continued influenza surveillance in wild birds and close monitoring of the potential risk to human health.IMPORTANCEH7 influenza viruses circulate in wild birds in the United States, but when the virus emerges in domestic poultry populations, the frequency of human exposure and the potential for human infections increases. An H7N8 highly pathogenic avian influenza (HPAI) virus and an H7N8 low-pathogenic avian influenza (LPAI) virus were recently isolated from commercial turkey farms in Indiana. To determine the risk that these influenza viruses pose to humans, we assessed their pathogenesis and transmissionin vitroand in mammalian models. We found that the H7N8 HPAI virus exhibited enhanced virulence, and although transmission was only observed with the H7N8 LPAI virus, the ability of this H7 virus to transmit in a mammalian host and quickly evolve to a more virulent strain is cause for concern. Our findings offer important insight into the potential for emerging H7 avian influenza viruses to acquire the ability to cause disease and transmit among mammals.


2015 ◽  
Vol 59 (5) ◽  
pp. 2647-2653 ◽  
Author(s):  
Miguel Retamal ◽  
Yacine Abed ◽  
Chantal Rhéaume ◽  
Francesca Cappelletti ◽  
Nicola Clementi ◽  
...  

ABSTRACTPN-SIA28 is a human monoclonal antibody (Hu-MAb) targeting highly conserved epitopes within the stem portion of the influenza virus hemagglutinin (HA) (N. Clementi, et al, PLoS One 6:e28001, 2011,http://dx.doi.org/10.1371/journal.pone.0028001). Previousin vitrostudies demonstrated PN-SIA28 neutralizing activities against phylogenetically divergent influenza A subtypes. In this study, the protective activity of PN-SIA28 was evaluated in mice inoculated with lethal influenza A/WSN/33 (H1N1), A/Quebec/144147/09 (H1N1)pdm09, and A/Victoria/3/75 (H3N2) viruses. At 24 h postinoculation (p.i.), animals received PN-SIA28 intraperitoneally (1 or 10 mg/kg of body weight) or 10 mg/kg of unrelated Hu-MAb (mock). Body weight loss and mortality rate (MR) were recorded for 14 days postinfection (p.i.). Lung viral titers (LVT) were determined at day 5 p.i. In A/WSN/33 (H1N1)-infected groups, all untreated and mock-receiving mice died, whereas MRs of 87.5% and 25% were observed in mice that received PN-SIA28 1 and 10 mg/kg, respectively. In influenza A(H1N1) pdm09-infected groups, an MR of 75% was recorded for untreated and mock-treated groups, whereas the PN-SIA28 1-mg/kg and 10-mg/kg groups had rates of 62.5% and 0%, respectively. In A/Victoria/3/75 (H3N2)-infected animals, untreated and mock-treated animals had MRs of 37.5% and 25%, respectively, and no mortalities were recorded after PN-SIA28 treatments. Accordingly, PN-SIA28 treatments significantly reduced weight losses and resulted in a ≥1-log reduction in LVT compared to the control in all infection groups. This study confirms that antibodies targeting highly conserved epitopes in the influenza HA stem region, like PN-SIA28, not only neutralize influenza A viruses of clinically relevant subtypesin vitrobut also, more importantly, protect from a lethal influenza virus challengein vivo.


2018 ◽  
Vol 92 (16) ◽  
Author(s):  
Xiangjie Sun ◽  
Joanna A. Pulit-Penaloza ◽  
Jessica A. Belser ◽  
Claudia Pappas ◽  
Melissa B. Pearce ◽  
...  

ABSTRACTWhile several swine-origin influenza A H3N2 variant (H3N2v) viruses isolated from humans prior to 2011 have been previously characterized for their virulence and transmissibility in ferrets, the recent genetic and antigenic divergence of H3N2v viruses warrants an updated assessment of their pandemic potential. Here, four contemporary H3N2v viruses isolated during 2011 to 2016 were evaluated for their replicative ability in bothin vitroandin vivoin mammalian models as well as their transmissibility among ferrets. We found that all four H3N2v viruses possessed similar or enhanced replication capacities in a human bronchial epithelium cell line (Calu-3) compared to a human seasonal influenza virus, suggestive of strong fitness in human respiratory tract cells. The majority of H3N2v viruses examined in our study were mildly virulent in mice and capable of replicating in mouse lungs with different degrees of efficiency. In ferrets, all four H3N2v viruses caused moderate morbidity and exhibited comparable titers in the upper respiratory tract, but only 2 of the 4 viruses replicated in the lower respiratory tract in this model. Furthermore, despite efficient transmission among cohoused ferrets, recently isolated H3N2v viruses displayed considerable variance in their ability to transmit by respiratory droplets. The lack of a full understanding of the molecular correlates of virulence and transmission underscores the need for close genotypic and phenotypic monitoring of H3N2v viruses and the importance of continued surveillance to improve pandemic preparedness.IMPORTANCESwine-origin influenza viruses of the H3N2 subtype, with the hemagglutinin (HA) and neuraminidase (NA) derived from historic human seasonal influenza viruses, continue to cross species barriers and cause human infections, posing an indelible threat to public health. To help us better understand the potential risk associated with swine-origin H3N2v viruses that emerged in the United States during the 2011-2016 influenza seasons, we use bothin vitroandin vivomodels to characterize the abilities of these viruses to replicate, cause disease, and transmit in mammalian hosts. The efficient respiratory droplet transmission exhibited by some of the H3N2v viruses in the ferret model combined with the existing evidence of low immunity against such viruses in young children and older adults highlight their pandemic potential. Extensive surveillance and risk assessment of H3N2v viruses should continue to be an essential component of our pandemic preparedness strategy.


Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 557 ◽  
Author(s):  
Li Zhang ◽  
Jungang Chen ◽  
Chang Ke ◽  
Haiwei Zhang ◽  
Shoujun Zhang ◽  
...  

Influenza virus infections can lead to viral pneumonia and acute respiratory distress syndrome in severe cases, causing significant morbidity and mortality and posing a great threat to human health. Because of the diversity of influenza virus strains and drug resistance to the current direct antiviral agents, there have been no effective drugs as yet to cure all patients infected by influenza viruses. Natural products from plants contain compounds with diverse structures that have the potential to interact with multiple host and virus factors. In this study, we identified the ethanol extract of Caesalpinia decapetala (Roth) Alston (EEC) as an inhibitor against the replication of a panel of influenza A and B viruses both on human pulmonary epithelial A549 and human monocytic U937 cells. The animal study revealed that EEC administration reduces the weight loss and improves the survival rate of mice infected with lethal influenza virus. Also, EEC treatment attenuated lung injury and reduced virus titer significantly. In conclusion, we showed that EEC has antiviral activity both in vitro and in vivo, suggesting that the plant C. decapetala has the potential to be further developed as a resource of new anti-influenza drugs.


Sign in / Sign up

Export Citation Format

Share Document