scholarly journals Protocol: high-efficiency in-planta Agrobacterium-mediated transgenic hairy root induction of Camellia sinensis var. sinensis

Plant Methods ◽  
2018 ◽  
Vol 14 (1) ◽  
Author(s):  
Karthikeyan Alagarsamy ◽  
Lubobi Ferdinand Shamala ◽  
Shu Wei
Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1170
Author(s):  
Chrysanthi Foti ◽  
Ourania Pavli

Previous efforts to transform lentil have been considerably hampered by the crop’s recalcitrant nature, giving rise to particularly low transformation and regeneration frequencies. This study aimed at optimizing an Agrobacterium rhizogenes-mediated transformation protocol for the generation of composite lentil plantlets, comprised of transgenic hairy roots and wild-type shoots. Transformation was performed by inoculating the cut hypocotyl of young lentil seedlings, while optimization involved the use of different bacterial strains, namely R1000, K599 and Arqua, and protocols differing in media composition with respect to the presence of acetosyringone and MES. Composite plantlets had a transgenic hairy root system characterized by an increased number of hairy roots at the hypocotyl proximal region, occasionally showing plagiotropic growth. Overall findings underline that transformation frequencies are subject to the bacterial strain, media composition as well as their combined effect. Among strains tested, R1000 proved to be the most capable of hairy root formation, while the presence of both acetosyringone and MES in inoculation and culture media yielded considerably higher transformation rates. The transgenic nature of hairy roots was demonstrated by the Ri T-DNA-mediated transfer of the rolB2 gene and the simultaneous absence of the virCD sequence of A. rhizogenes. Our findings provide strong evidence that A. rhizogenes-mediated transformation may be employed as a suitable approach for generating composite seedlings in lentil, a species whose recalcitrance severely hampers all efforts addressed to transformation and whole plant regeneration procedures. To the best of our knowledge, this is the first report on the development of a non-laborious and time-efficient protocol for the generation of transgenic hairy roots in lentil, thus providing an amenable platform for root biology and gene expression studies in the context of improving traits related to biotic and abiotic stress tolerance.


2007 ◽  
Vol 6 (15) ◽  
pp. 1817-1820 ◽  
Author(s):  
KARTHIKEYAN A ◽  
PALANIVEL S PARVATHY S ◽  
BHAKYA RAJ R

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Peng Huang ◽  
Liqiong Xia ◽  
Wei Liu ◽  
Ruolan Jiang ◽  
Xiubin Liu ◽  
...  

2021 ◽  
Vol 07 ◽  
Author(s):  
Chang-Qi Hao ◽  
Shuai-Run Wang ◽  
Yi Wang ◽  
Xin-Yi Hou ◽  
Ya-Xuan Jiang ◽  
...  

Background: Hairy root culture has been widely used in the production of metabolites in dicotyledons, and a large number of food crops and medicinal plants in monocotyledons need to be developed, but there are many difficulties in the induction of hairy roots in monocotyledons. The purpose of this paper is to introduce the inducing methods, influencing factors and application of hairy roots in monocotyledons, and to promote the development of hairy root system in monocotyledons. Methods: The mechanism of action of Agrobacterium rhizogenes and the current situation of hairy root induction, induction methods and influencing factors of monocotyledons were summarized so as to provide convenience for efficient acquisition of hairy root of monocotyledons. Results: Monocotyledons are not easy to produce phenols, cells are prone to lignification, adverse differentiation and selective response to Agrobacterium rhizogenes strains. It is proposed that before induction, plant varieties and explants should be selected, and different infection strains should be screened. In the process of hairy root induction, exogenous inducers such as acetosyringone can be added. Although these factors can provide some help for the induction of hairy roots in monocotyledons, we still need to pay attention to the disadvantages of monocotyledons from dicotyledons at the cellular level. Conclusion: A large number of food crops and medicinal plants are monocotyledons. Hairy root culture can be used to help the breeding and production of medicinal substances. Therefore, it is necessary to pay attention to the selection of varieties and explants, the selection of Agrobacterium rhizogenes and the addition of acetosyringone in the process of hairy root induction so as to improve the production efficiency and facilitate the development and utilization of monocotyledons.


Sign in / Sign up

Export Citation Format

Share Document