scholarly journals Comparative Subsequence Sets Analysis (CoSSA) is a robust approach to identify haplotype specific SNPs; mapping and pedigree analysis of a potato wart disease resistance gene Sen3

Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Charlotte Prodhomme ◽  
Danny Esselink ◽  
Theo Borm ◽  
Richard G. F. Visser ◽  
Herman J. van Eck ◽  
...  
2020 ◽  
Vol 133 (12) ◽  
pp. 3419-3439
Author(s):  
Charlotte Prodhomme ◽  
Gert van Arkel ◽  
Jarosław Plich ◽  
Jasper E. Tammes ◽  
Johan Rijk ◽  
...  

Abstract Key message Two novel major effect loci (Sen4 and Sen5) and several minor effect QTLs for potato wart disease resistance have been mapped. The importance of minor effect loci to bring full resistance to wart disease was investigated. Using the newly identified and known wart disease resistances, a panel of potato breeding germplasm and Solanum wild species was screened. This provided a state-of-the-art “hitch-hikers-guide” of complementary wart disease resistance sources. Abstract Potato wart disease, caused by the obligate biotrophic soil-born fungus Synchytrium endobioticum, is the most important quarantine disease of potato. Because of its huge impact on yield, the lack of chemical control and the formation of resting spores with long viability, breeding for resistant varieties combined with strict quarantine measures are the only way to efficiently and durably manage the disease. In this study, we set out to make an inventory of the different resistance sources. Using a Genome-Wide Association Study (GWAS) in the potato breeding genepool, we identified Sen4, associated with pathotypes 2, 6 and 18 resistance. Associated SNPs mapped to the south arm of chromosome 12 and were validated to be linked to resistance in one full-sib population. Also, a bulked segregant analysis combined with a Comparative Subsequence Sets Analysis (CoSSA) resulted in the identification of Sen5, associated with pathotypes 2, 6 and 18 resistance, on the south arm of chromosome 5. In addition to these two major effect loci, the GWAS and CoSSA allowed the identification of several quantitative trait loci necessary to bring full resistance to certain pathotypes. Panels of varieties and Solanum accessions were screened for the presence of Sen1, Sen2, Sen3, Sen4 and Sen5. Combined with pedigree analysis, we could trace back some of these genes to the ancestral resistance donors. This analysis revealed complementary resistance sources and allows elimination of redundancy in wart resistance breeding programs.


2005 ◽  
Vol 112 (2) ◽  
pp. 269-277 ◽  
Author(s):  
Bart Brugmans ◽  
Ronald G. B. Hutten ◽  
A. Nico O. Rookmaker ◽  
Richard G. F. Visser ◽  
Herman J. van Eck

2012 ◽  
Vol 34 (1) ◽  
pp. 56
Author(s):  
Ling CHEN ◽  
Hao ZHANG ◽  
Xian-Qin QIU ◽  
Hui-Jun YAN ◽  
Qi-Gang WANG ◽  
...  

Genetics ◽  
2002 ◽  
Vol 162 (4) ◽  
pp. 1961-1977
Author(s):  
Michelle A Graham ◽  
Laura Fredrick Marek ◽  
Randy C Shoemaker

Abstract PCR amplification was previously used to identify a cluster of resistance gene analogues (RGAs) on soybean linkage group J. Resistance to powdery mildew (Rmd-c), Phytophthora stem and root rot (Rps2), and an ineffective nodulation gene (Rj2) map within this cluster. BAC fingerprinting and RGA-specific primers were used to develop a contig of BAC clones spanning this region in cultivar “Williams 82” [rps2, Rmd (adult onset), rj2]. Two cDNAs with homology to the TIR/NBD/LRR family of R-genes have also been mapped to opposite ends of a BAC in the contig Gm_Isb001_091F11 (BAC 91F11). Sequence analyses of BAC 91F11 identified 16 different resistance-like gene (RLG) sequences with homology to the TIR/NBD/LRR family of disease resistance genes. Four of these RLGs represent two potentially novel classes of disease resistance genes: TIR/NBD domains fused inframe to a putative defense-related protein (NtPRp27-like) and TIR domains fused inframe to soybean calmodulin Ca2+-binding domains. RT-PCR analyses using gene-specific primers allowed us to monitor the expression of individual genes in different tissues and developmental stages. Three genes appeared to be constitutively expressed, while three were differentially expressed. Analyses of the R-genes within this BAC suggest that R-gene evolution in soybean is a complex and dynamic process.


BMC Genomics ◽  
2011 ◽  
Vol 12 (1) ◽  
Author(s):  
Alessandra F Ribas ◽  
Alberto Cenci ◽  
Marie-Christine Combes ◽  
Hervé Etienne ◽  
Philippe Lashermes

2012 ◽  
Vol 159 (1) ◽  
pp. 336-354 ◽  
Author(s):  
Tom Ashfield ◽  
Ashley N. Egan ◽  
Bernard E. Pfeil ◽  
Nicolas W.G. Chen ◽  
Ram Podicheti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document