scholarly journals Cranial organs at risk delineation: heterogenous practices in radiotherapy planning

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Guillaume Vogin ◽  
Liza Hettal ◽  
Clarisse Bartau ◽  
Juliette Thariat ◽  
Marie-Virginie Claeys ◽  
...  

Abstract Background Segmentation is a crucial step in treatment planning that directly impacts dose distribution and optimization. The aim of this study was to evaluate the inter-individual variability of common cranial organs at risk (OAR) delineation in neurooncology practice. Methods Anonymized simulation contrast-enhanced CT and MR scans of one patient with a solitary brain metastasis was used for delineation and analysis. Expert professionals from 16 radiotherapy centers involved in brain structures delineation were asked to segment 9 OAR on their own treatment planning system. As reference, two experts in neurooncology, produced a unique consensual contour set according to guidelines. Overlap ratio, Kappa index (KI), volumetric ratio, Commonly Contoured Volume, Supplementary Contoured Volume were evaluated using Artiview™ v 2.8.2—according to occupation, seniority and level of expertise of all participants. Results For the most frequently delineated and largest OAR, the mean KI are often good (0.8 for the parotid and the brainstem); however, for the smaller OAR, KI degrade (0.3 for the optic chiasm, 0.5% for the cochlea), with a significant discrimination (p < 0.01). The radiation oncologists, members of Association des Neuro-Oncologue d’Expression Française society performed better in all indicators compared to non-members (p < 0.01). Our exercise was effective in separating the different participating centers with 3 of the reported indicators (p < 0.01). Conclusion Our study illustrates the heterogeneity in normal structures contouring between professionals. We emphasize the need for cerebral OAR delineation harmonization—that is a major determinant of therapeutic ratio and clinical trials evaluation.

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Wufei Cao ◽  
Yongdong Zhuang ◽  
Lixin Chen ◽  
Xiaowei Liu

Abstract Purpose In this study, we employed a gated recurrent unit (GRU)-based recurrent neural network (RNN) using dosimetric information induced by individual beam to predict the dose-volume histogram (DVH) and investigated the feasibility and usefulness of this method in biologically related models for nasopharyngeal carcinomas (NPC) treatment planning. Methods and materials One hundred patients with NPC undergoing volumetric modulated arc therapy (VMAT) between 2018 and 2019 were randomly selected for this study. All the VMAT plans were created using the Monaco treatment planning system (Elekta, Sweden) and clinically approved: > 98% of PGTVnx received the prescribed doses of 70 Gy, > 98% of PGTVnd received the prescribed doses of 66 Gy and > 98% of PCTV received 60 Gy. Of these, the data from 80 patients were used to train the GRU-RNN, and the data from the other 20 patients were used for testing. For each NPC patient, the DVHs of different organs at risk were predicted by a trained GRU-based RNN using the information given by individual conformal beams. Based on the predicted DVHs, the equivalent uniform doses (EUD) were calculated and applied as dose constraints during treatment planning optimization. The regenerated VMAT experimental plans (EPs) were evaluated by comparing them with the clinical plans (CPs). Results For the 20 test patients, the regenerated EPs guided by the GRU-RNN predictive model achieved good consistency relative to the CPs. The EPs showed better consistency in PTV dose distribution and better dose sparing for many organs at risk, and significant differences were found in the maximum/mean doses to the brainstem, brainstem PRV, spinal cord, lenses, temporal lobes, parotid glands and larynx with P-values < 0.05. On average, compared with the CPs, the maximum/mean doses to these OARs were altered by − 3.44 Gy, − 1.94 Gy, − 1.88 Gy, 0.44 Gy, 1.98 Gy, − 1.82 Gy and 2.27 Gy, respectively. In addition, significant differences were also found in brainstem and spinal cord for the dose received by 1 cc volume with 4.11 and 1.67 Gy dose reduction in EPs on average. Conclusion The GRU-RNN-based DVH prediction method was capable of accurate DVH prediction. The regenerated plans guided by the predicted EUDs were not inferior to the manual plans, had better consistency in PTVs and better dose sparing in critical OARs, indicating the usefulness and effectiveness of biologically related model in knowledge-based planning.


Author(s):  
Khamis Amour ◽  
Dr. Khamza Maunda ◽  
Dr. Mohamed Mazunga ◽  
Dr. Peane Maleka ◽  
Professor Peter Msaki

Although External Beam Radiation Therapy (EBRT) is essential tool for the radiation therapy of cervical cancer; only one cancer institute in Tanzania performs 3-Dimensional Conformal Radiation Therapy (3DCRT) Computed Tomography (CT)-based planning. To identify benefits and advantages of 3D-CRT over 2D- conventional radiation therapy (2D-CRT), dosimetric parameters for tumor targets and organs at risk (OARs) were compared between these modalities for 23 cervical cancer patients. 11 cervical cancer patients were CT scanned after proper positioning and immobilization and transferred to Eclipse Treatment Planning System (TPS) for dose planning. The remaining 12 curative intent patients were planned using 2D-CRT system and treatment times were calculated for each patient. From the CT based planning, the minimum dose (D min), maximum dose (D max) and mean dose (D mean) to Planning Target Volume (PTV) and organs at risk (OAR), were compared for each plan. On average, the optimized maximum doses for bladder, rectum, femoral heads, PTV and Gross Tumor Volume (GTV) were 46.56 Gy, 42.65 Gy, 28.76 Gy, 48.56 Gy and 48.53 Gy. For 2D-concentional planning, the dose rate was 75.75 cGy/min and the average treatment time was 1.6075 minutes. This study confirms that 3D CT-based planning is a good choice in the treatment protocol for carcinoma cervix as it delivered a highly homogeneous and conformal plan with superior dose coverage to PTV and better OARs sparing.


2020 ◽  
Author(s):  
Wufei Cao ◽  
Yongdong Zhuang ◽  
Lixin Chen ◽  
Xiaowei Liu

Abstract Purpose: In this study, we employed a gated recurrent unit (GRU)-based recurrent neural network (RNN) using dosimetric information induced by individual beam to predict the dose-volume histogram (DVH) and investigated the feasibility and usefulness of this method in biologically related models for nasopharyngeal carcinomas (NPC) treatment planning.Methods and Materials: One hundred patients with NPC undergoing volumetric modulated arc therapy (VMAT) between 2018 and 2019 were randomly selected for this study. All the VMAT plans were created using the Monaco treatment planning system (Elekta, Sweden) and clinically approved: >98% of PGTVnx received the prescribed doses of 70 Gy, >98% of PGTVnd received the prescribed doses of 66 Gy and >98% of PCTV received 60 Gy. Of these, the data from 80 patients were used to train the GRU-RNN, and the data from the other 20 patients were used for testing. For each NPC patient, the DVHs of different organs at risk were predicted by a trained GRU-based RNN using the information given by individual conformal beams. Based on the predicted DVHs, the equivalent uniform doses (EUD) were calculated and applied as dose constraints during treatment planning optimization. The regenerated VMAT experimental plans (EPs) were evaluated by comparing them with the clinical plans (CPs).Results: For the 20 test patients, the regenerated EPs guided by the GRU-RNN predictive model achieved good consistency relative to the CPs. The EPs showed better consistency in PTV dose distribution and better dose sparing for many organs at risk, and significant differences were found in the maximum/mean doses to the brainstem, brainstem PRV, spinal cord, lenses, temporal lobes, parotid glands and larynx with P-values <0.05. On average, compared with the CPs, the maximum/mean doses to these OARs were altered by -3.44 Gy, -1.94 Gy, -1.88 Gy, 0.44 Gy, 1.98 Gy, -1.82 Gy and 2.27 Gy, respectively. In addition, significant differences were also found in brainstem and spinal cord for the dose received by 1cc volume with 4.11 and 1.67 Gy dose reduction in EPs on average.Conclusion: The GRU-RNN-based DVH prediction method was capable of accurate DVH prediction. The regenerated plans guided by the predicted EUDs were not inferior to the manual plans, had better consistency in PTVs and better dose sparing in critical OARs, indicating the usefulness and effectiveness of biologically related model in knowledge-based planning.


2017 ◽  
Vol 19 (1) ◽  
pp. 106-114 ◽  
Author(s):  
Antonella Fogliata ◽  
Stephen Thompson ◽  
Antonella Stravato ◽  
Stefano Tomatis ◽  
Marta Scorsetti ◽  
...  

Author(s):  
Ghulam Murtaza ◽  
Zaheer Abbas Gillani ◽  
Shahid Mehmood ◽  
Jalil Ur Rehman ◽  
Ehsan Ullah Khan ◽  
...  

Abstract Objective: To evaluate different VMAT planning techniques for a multi-leaf collimator (MLC)providing maximum aperture of 21 × 16 cm². Methods: A VMAT planning study of nine prostate and nine head-and-neck cancer patients was carried out. The patients were previously treated with Intensity Modulated Radiotherapy (IMRT) technique during 2014-15, at radiation oncology SanBortolo Hospital, Vicenza, Italy. Three VMAT plans for each of prostate and head-and-neck cancer patient were optimized using Pinnacle treatment planning system for 6MV photon beam from ElektaSynergyS®Linac system. Single arc, dual arc and combined two independent-single-arcs were optimized for collimator angle 45°. VMAT treatment planning comparison was made among single-arc dual-arc and combined two independent-single-arcs. The student’s t-test (two-sided) with p ? 0.05 was applied for significant difference between dose volume indices of plans. Results: All VMAT techniques produced clinically acceptable plans for prostate, while for head-and-neck, DA and ISAs significantly improved target coverage compared to SA. Single arc is sufficient for prostate, while inefficient in case of head-and-neck dose-planning. In spite of having different VMAT optimization approach dual arc and two combined independent-single-arcs provided very similar target coverage, while dual arc improved sparing of organs-at-risk. Similar treatment delivery times were observed for DA and ISAs VMAT techniques. Conclusion: Single arc is sufficient for prostate, while inefficient in case of head-and-neck dose-planning.Dual arc and two combined independent-single-arcs provided similar PTV coverage, while DA provided better sparing of organs at risk. Continuous...


2001 ◽  
Vol 87 (2) ◽  
pp. 91-94 ◽  
Author(s):  
Carlo Capirci ◽  
Polico Cesare ◽  
Giovanni Mandoliti ◽  
Giovanni Pavanato ◽  
Marcello Gava ◽  
...  

Modern computer networks provide satisfying levels of data recording and verification between the treatment planning system (TPS) and the accelerators, while the main weakness of the preparation chain remains the simulation. When a conventional simulator is employed, it may adversely affect the three-dimensional treatment planning system (3DPS) process because of the difficulty to document the leaf positions on the simulator location films and on the patient's skin. With a conventional simulator, hard copies of the DRRs of each field and CT scans at isocenter level are needed. In an attempt to transfer more information displayed from a BEV perspective from the 3DPS to simulator radiographs, this study aimed to reduce the quality loss by using a 2D conventional simulator in a 3DPS process. We realized an acetate photocopy of TPS data for each field, from a BEV perspective, containing: DRR, wire frames of the PTV, organs at risk and MLC aperture. The photocopies, with an appropriate magnification factor to obtain a correct projective value (ratio 1:1) at isocenter level, are carefully placed on the radiographic images on the same hard copy which allows us to better understand possible setup errors and obliges us to correct these. The method provides reliable documentation, facilitates treatment verification, and fulfils the criteria for MLC simulation. It is accurate, simple, and very inexpensive.


2020 ◽  
Vol 19 ◽  
pp. 153303382091571
Author(s):  
Yiwei Yang ◽  
Kainan Shao ◽  
Jie Zhang ◽  
Ming Chen ◽  
Yuanyuan Chen ◽  
...  

Objective: To evaluate and quantify the planning performance of automatic planning (AP) with manual planning (MP) for nasopharyngeal carcinoma in the RayStation treatment planning system (TPS). Methods: A progressive and effective design method for AP of nasopharyngeal carcinoma was realized through automated scripts in this study. A total of 30 patients with nasopharyngeal carcinoma with initial treatment was enrolled. The target coverage, conformity index (CI), homogeneity index (HI), organs at risk sparing, and the efficiency of design and execution were compared between automatic and manual volumetric modulated arc therapy (VMAT) plans. Results: The results of the 2 design methods met the clinical dose requirement. The differences in D95 between the 2 groups in PTV1 and PTV2 showed statistical significance, and the MPs are higher than APs, but the difference in absolute dose was only 0.21% and 0.16%. The results showed that the conformity index of planning target volumes (PTV1, PTV2, PTVnd and PGTVnx+rpn [PGTVnx and PGTVrpn]), homogeneity index of PGTVnx+rpn, and HI of PTVnd in APs are better than that in MPs. For organs at risk, the APs are lower than the MPs, and the difference was statistically significant ( P < .05). The manual operation time in APs was 83.21% less than that in MPs, and the computer processing time was 34.22% more. Conclusion: IronPython language designed by RayStation TPS has clinical application value in the design of automatic radiotherapy plan for nasopharyngeal carcinoma. The dose distribution of tumor target and organs at risk in the APs was similar or better than those in the MPs. The time of manual operation in the plan design showed a sharp reduction, thus significantly improving the work efficiency in clinical application.


Author(s):  
Hiroaki Kumada ◽  
Takemi Nakamura ◽  
Akira Matsumura ◽  
Koji Ono

To improve treatment planning in boron neutron capture therapy (BNCT), a new Monte-Carlo radiotherapy planning system is under development at Japan Atomic Energy Agency (JAEA). This system (developing code: JCDS-FX) builds on fundamental technologies of JCDS (JAEA Computation Dosimetry System) which has been applied to actual BNCT trials at Japan Research Reactor No.4 (JRR-4). Basic technologies of JCDS have been taken over to JCDS-FX, and some new functions have been built into the system. One of features of the JCDS-FX is that PHITS as a multi-purpose particle Monte-Carlo transport code has been applied to particle transport calculation. Application of PHITS enables to evaluate doses for neutrons and photons as well as protons and heavy ions. Therefore, the JCDS-FX with PHITS can perform treatment planning for not only BNCT but also particle radiotherapy. To verify calculation accuracy of the JCDS-FX with PHITS, dose evaluations for neutron irradiation of a cylindrical water phantom and for an actual clinical trial conducted at JRR-4 were performed. The verification results indicated that JCDS-FX is applicable to BNCT treatment planning in practical use. Further verifications of the system are being performed to achieve practical application of the system in the future. And in addition to the BNCT, investigations for application of the system to any other particle radiotherapy like proton therapy are carried forward.


Author(s):  
Muhammad Masud Rana ◽  
S.M. Azharul Islam ◽  
M. Moinul Islam ◽  
Md. Shakilur Rahman ◽  
Sarwar Alam ◽  
...  

The Pencil Beam Convolution (PBC) algorithm in radiation treatment planning system is widely used to calculate the radiation dose distribution in radiotherapy planning. A new photon dose calculation algorithm known as Anisotropic Analytical Algorithm (AAA) by Varian Medical Systems is applied to investigate the difference of dose distribution by using AAA and PBC algorithms for the lung cancer with an inhomogeneity of its low density. In the present work, radiotherapy treatment planning of 10 lung cancer patients are designed with 6 MV photon beam using three-dimensional conformal radiation therapy (3DCRT) and dose distribution was calculated by the AAA and the PBC Algorithms. The dose distribution performance is evaluated by dose profile curve along transversal slice of PTV and Dose Volume Histogram (DVH) covered by the 95% isodose of PTV. The mean dose of organ at risks did not changed significantly but the volume of the PTV covered by the 95% isodose curve was decreased by 6% with inhomogeneity due to the algorithms. The dose distribution and the accuracy in calculating the absorbed dose of the AAA algorithm of the Varian Eclipse treatment planning system is analyzed and discussed.


Sign in / Sign up

Export Citation Format

Share Document