scholarly journals Application of Dose-Volume Histogram Prediction in Biologically Related Models for Nasopharyngeal Carcinomas Treatment Planning

2020 ◽  
Author(s):  
Wufei Cao ◽  
Yongdong Zhuang ◽  
Lixin Chen ◽  
Xiaowei Liu

Abstract Purpose: In this study, we employed a gated recurrent unit (GRU)-based recurrent neural network (RNN) using dosimetric information induced by individual beam to predict the dose-volume histogram (DVH) and investigated the feasibility and usefulness of this method in biologically related models for nasopharyngeal carcinomas (NPC) treatment planning.Methods and Materials: One hundred patients with NPC undergoing volumetric modulated arc therapy (VMAT) between 2018 and 2019 were randomly selected for this study. All the VMAT plans were created using the Monaco treatment planning system (Elekta, Sweden) and clinically approved: >98% of PGTVnx received the prescribed doses of 70 Gy, >98% of PGTVnd received the prescribed doses of 66 Gy and >98% of PCTV received 60 Gy. Of these, the data from 80 patients were used to train the GRU-RNN, and the data from the other 20 patients were used for testing. For each NPC patient, the DVHs of different organs at risk were predicted by a trained GRU-based RNN using the information given by individual conformal beams. Based on the predicted DVHs, the equivalent uniform doses (EUD) were calculated and applied as dose constraints during treatment planning optimization. The regenerated VMAT experimental plans (EPs) were evaluated by comparing them with the clinical plans (CPs).Results: For the 20 test patients, the regenerated EPs guided by the GRU-RNN predictive model achieved good consistency relative to the CPs. The EPs showed better consistency in PTV dose distribution and better dose sparing for many organs at risk, and significant differences were found in the maximum/mean doses to the brainstem, brainstem PRV, spinal cord, lenses, temporal lobes, parotid glands and larynx with P-values <0.05. On average, compared with the CPs, the maximum/mean doses to these OARs were altered by -3.44 Gy, -1.94 Gy, -1.88 Gy, 0.44 Gy, 1.98 Gy, -1.82 Gy and 2.27 Gy, respectively. In addition, significant differences were also found in brainstem and spinal cord for the dose received by 1cc volume with 4.11 and 1.67 Gy dose reduction in EPs on average.Conclusion: The GRU-RNN-based DVH prediction method was capable of accurate DVH prediction. The regenerated plans guided by the predicted EUDs were not inferior to the manual plans, had better consistency in PTVs and better dose sparing in critical OARs, indicating the usefulness and effectiveness of biologically related model in knowledge-based planning.

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Wufei Cao ◽  
Yongdong Zhuang ◽  
Lixin Chen ◽  
Xiaowei Liu

Abstract Purpose In this study, we employed a gated recurrent unit (GRU)-based recurrent neural network (RNN) using dosimetric information induced by individual beam to predict the dose-volume histogram (DVH) and investigated the feasibility and usefulness of this method in biologically related models for nasopharyngeal carcinomas (NPC) treatment planning. Methods and materials One hundred patients with NPC undergoing volumetric modulated arc therapy (VMAT) between 2018 and 2019 were randomly selected for this study. All the VMAT plans were created using the Monaco treatment planning system (Elekta, Sweden) and clinically approved: > 98% of PGTVnx received the prescribed doses of 70 Gy, > 98% of PGTVnd received the prescribed doses of 66 Gy and > 98% of PCTV received 60 Gy. Of these, the data from 80 patients were used to train the GRU-RNN, and the data from the other 20 patients were used for testing. For each NPC patient, the DVHs of different organs at risk were predicted by a trained GRU-based RNN using the information given by individual conformal beams. Based on the predicted DVHs, the equivalent uniform doses (EUD) were calculated and applied as dose constraints during treatment planning optimization. The regenerated VMAT experimental plans (EPs) were evaluated by comparing them with the clinical plans (CPs). Results For the 20 test patients, the regenerated EPs guided by the GRU-RNN predictive model achieved good consistency relative to the CPs. The EPs showed better consistency in PTV dose distribution and better dose sparing for many organs at risk, and significant differences were found in the maximum/mean doses to the brainstem, brainstem PRV, spinal cord, lenses, temporal lobes, parotid glands and larynx with P-values < 0.05. On average, compared with the CPs, the maximum/mean doses to these OARs were altered by − 3.44 Gy, − 1.94 Gy, − 1.88 Gy, 0.44 Gy, 1.98 Gy, − 1.82 Gy and 2.27 Gy, respectively. In addition, significant differences were also found in brainstem and spinal cord for the dose received by 1 cc volume with 4.11 and 1.67 Gy dose reduction in EPs on average. Conclusion The GRU-RNN-based DVH prediction method was capable of accurate DVH prediction. The regenerated plans guided by the predicted EUDs were not inferior to the manual plans, had better consistency in PTVs and better dose sparing in critical OARs, indicating the usefulness and effectiveness of biologically related model in knowledge-based planning.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Guillaume Vogin ◽  
Liza Hettal ◽  
Clarisse Bartau ◽  
Juliette Thariat ◽  
Marie-Virginie Claeys ◽  
...  

Abstract Background Segmentation is a crucial step in treatment planning that directly impacts dose distribution and optimization. The aim of this study was to evaluate the inter-individual variability of common cranial organs at risk (OAR) delineation in neurooncology practice. Methods Anonymized simulation contrast-enhanced CT and MR scans of one patient with a solitary brain metastasis was used for delineation and analysis. Expert professionals from 16 radiotherapy centers involved in brain structures delineation were asked to segment 9 OAR on their own treatment planning system. As reference, two experts in neurooncology, produced a unique consensual contour set according to guidelines. Overlap ratio, Kappa index (KI), volumetric ratio, Commonly Contoured Volume, Supplementary Contoured Volume were evaluated using Artiview™ v 2.8.2—according to occupation, seniority and level of expertise of all participants. Results For the most frequently delineated and largest OAR, the mean KI are often good (0.8 for the parotid and the brainstem); however, for the smaller OAR, KI degrade (0.3 for the optic chiasm, 0.5% for the cochlea), with a significant discrimination (p < 0.01). The radiation oncologists, members of Association des Neuro-Oncologue d’Expression Française society performed better in all indicators compared to non-members (p < 0.01). Our exercise was effective in separating the different participating centers with 3 of the reported indicators (p < 0.01). Conclusion Our study illustrates the heterogeneity in normal structures contouring between professionals. We emphasize the need for cerebral OAR delineation harmonization—that is a major determinant of therapeutic ratio and clinical trials evaluation.


Author(s):  
Khamis Amour ◽  
Dr. Khamza Maunda ◽  
Dr. Mohamed Mazunga ◽  
Dr. Peane Maleka ◽  
Professor Peter Msaki

Although External Beam Radiation Therapy (EBRT) is essential tool for the radiation therapy of cervical cancer; only one cancer institute in Tanzania performs 3-Dimensional Conformal Radiation Therapy (3DCRT) Computed Tomography (CT)-based planning. To identify benefits and advantages of 3D-CRT over 2D- conventional radiation therapy (2D-CRT), dosimetric parameters for tumor targets and organs at risk (OARs) were compared between these modalities for 23 cervical cancer patients. 11 cervical cancer patients were CT scanned after proper positioning and immobilization and transferred to Eclipse Treatment Planning System (TPS) for dose planning. The remaining 12 curative intent patients were planned using 2D-CRT system and treatment times were calculated for each patient. From the CT based planning, the minimum dose (D min), maximum dose (D max) and mean dose (D mean) to Planning Target Volume (PTV) and organs at risk (OAR), were compared for each plan. On average, the optimized maximum doses for bladder, rectum, femoral heads, PTV and Gross Tumor Volume (GTV) were 46.56 Gy, 42.65 Gy, 28.76 Gy, 48.56 Gy and 48.53 Gy. For 2D-concentional planning, the dose rate was 75.75 cGy/min and the average treatment time was 1.6075 minutes. This study confirms that 3D CT-based planning is a good choice in the treatment protocol for carcinoma cervix as it delivered a highly homogeneous and conformal plan with superior dose coverage to PTV and better OARs sparing.


2021 ◽  
pp. 20201011
Author(s):  
Paulo Quintero ◽  
Yongqiang Cheng ◽  
David Benoit ◽  
Craig Moore ◽  
Andrew Beavis

Objective: High levels of beam modulation complexity (MC) and monitor units (μ) can compromise the plan deliverability of intensity-modulated radiotherapy treatments. Our study evaluates the effect of three treatment planning system (TPS) parameters on MC and μ using different multi leaf collimator (MLC) architectures. Methods: 192 volumetric-modulated arc therapy plans were calculated using one virtual prostate phantom considering three main settings: (1) three TPS-parameters (Convergence; Aperture Shape Controller, ASC; and Dose Calculation Resolution, DCR) selected from Eclipse v15.6, (2) four levels of dose-sparing priority for organs at risk (OAR), and (3) two treatment units with same nominal conformity resolution and different MLC architectures (Halcyon-v2 dual-layer MLC, DL-MLC & TrueBeam single-layer MLC, SL-MLC). We use seven complexity metrics to evaluate the MC, including two new metrics for DL-MLC, assessed by their correlation with γ passing rate (GPR) analysis. Results: DL-MLC plans demonstrated lower dose-sparing values than SL-MLC plans (p < 0.05). TPS-parameters didn’t change significantly the complexity metrics for either MLC architectures. However, for SL-MLC, significant variations of μ, target volume dose-homogeneity, and dose-spillage were associated with ASC and DCR (p < 0.05). μ were found to be correlated (highly or moderately) with all complexity metrics (p < 0.05) for both MLC plans. Additionally, our new complexity metrics presented a moderate correlation with GPR (r < 0.65). An important correlation was demonstrated between MC (plan deliverability) and dose-sparing priority level for DL-MLC. Conclusions: TPS-parameters selected do not change MC for DL-MLC architecture, but they might have a potential use to control the μ, PTV homogeneity or dose spillage for SL-MLC. Our new DL-MLC complexity metrics presented important information to be considered in future pre-treatment quality assurance programs. Finally, the prominent dependence between plan deliverability and priority applied to OAR dose sparing for DL-MLC needs to be analysed and considered as an additional predictor of GPRs in further studies. Advances in knowledge: Dose-sparing priority might influence in modulation complexity of DL-MLC.


2019 ◽  
Vol 17 (2) ◽  
pp. 70
Author(s):  
Purwantiningsi Purwantiningsi ◽  
Hadi Lesmana

Telah dilakukan pengukuran nilai CT number pada pesawat CT Scan Simulator<br />General Elektrik di RSPAD Gatot Soebroto Jakarta dengan menggunakan phanthom CIRS<br />062 dengan berbagai variasi nilai jaringan ( lung inhale, lung exhale, adipose, breast, water,<br />muscle, liver, bone 200, bone 800 ), dilakukan scanning phantom dengan ketebalan slices<br />10 mm, kV 100, mAs 190. Pengukuran CT number dilakukan dengan memberi tanda<br />lingkaran pada setiap objek jaringan dengan diameter lingkaran Region Of Interest (ROI)<br />yang sama, maka didapatkan hasil CT number ( Lung inhale ; -800.9, Lung exhale ; -492.1,<br />Adipose ; -66.8, Breast ; -30.2, Water ; -7.7, Muscle ; 47.5, Liver ; 56.2, Bone 200 ; 255.3,<br />bone 800 ; 929 ). Hasil nilai pengukuran CT number jaringan di input kedalam program iSis<br />3D yang terdapat di TPS (Treatment Planning Sistem). Hasil kalkulasi dosis dilakukan<br />menggunakan sampel planning pada organ paru pada program iSis 3D dengan<br />menggunakan energi elektron 8 MeV dan didapatkan hasil perbedaan sebelum dan sesudah<br />dimasukan nilai densitas elektron dalam kurva DVH (dose volume histogram). hasil yang<br />didapat dari bacaan kurva DVH antara sebelum dan sesudah dimasukan nilai densitas<br />menyatakan bahwa selisih perbedaan pada daerah jaringan paru sebelah kanan akumulasi<br />dosis rata-rata (Dmean) 3.6 % pada volume 2080 cm3, pada daerah jaringan paru sebelah<br />kiri dosis rata-rata (Dmean) 2.4% pada volume 1271 cm3, dan pada organ jantung dosis<br />rata-rata (Dmean) 1,36% pada volume 199,4 cm3.


2017 ◽  
Vol 19 (1) ◽  
pp. 106-114 ◽  
Author(s):  
Antonella Fogliata ◽  
Stephen Thompson ◽  
Antonella Stravato ◽  
Stefano Tomatis ◽  
Marta Scorsetti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document