scholarly journals Optimizing expression quantitative trait locus mapping workflows for single-cell studies

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Anna S. E. Cuomo ◽  
Giordano Alvari ◽  
Christina B. Azodi ◽  
Davis J. McCarthy ◽  
Marc Jan Bonder ◽  
...  

Abstract Background Single-cell RNA sequencing (scRNA-seq) has enabled the unbiased, high-throughput quantification of gene expression specific to cell types and states. With the cost of scRNA-seq decreasing and techniques for sample multiplexing improving, population-scale scRNA-seq, and thus single-cell expression quantitative trait locus (sc-eQTL) mapping, is increasingly feasible. Mapping of sc-eQTL provides additional resolution to study the regulatory role of common genetic variants on gene expression across a plethora of cell types and states and promises to improve our understanding of genetic regulation across tissues in both health and disease. Results While previously established methods for bulk eQTL mapping can, in principle, be applied to sc-eQTL mapping, there are a number of open questions about how best to process scRNA-seq data and adapt bulk methods to optimize sc-eQTL mapping. Here, we evaluate the role of different normalization and aggregation strategies, covariate adjustment techniques, and multiple testing correction methods to establish best practice guidelines. We use both real and simulated datasets across single-cell technologies to systematically assess the impact of these different statistical approaches. Conclusion We provide recommendations for future single-cell eQTL studies that can yield up to twice as many eQTL discoveries as default approaches ported from bulk studies.

2021 ◽  
Author(s):  
Anna S.E. Cuomo ◽  
Giordano Alvari ◽  
Christina B. Azodi ◽  
Davis J. McCarthy ◽  
Marc Jan Bonder ◽  
...  

AbstractSingle-cell RNA-sequencing (scRNA-seq) has enabled the unbiased, high-throughput quantification of gene expression specific to cell types and states. With the cost of scRNA-seq decreasing and techniques for sample multiplexing improving, population-scale scRNA-seq, and thus single-cell expression quantitative trait locus (sc-eQTL) mapping, is increasingly feasible. Mapping of sc-eQTL provides additional resolution to study the regulatory role of common genetic variants on gene expression across a plethora of cell types and states, and promises to improve our understanding of genetic regulation across tissues in both health and disease. While previously established methods for bulk eQTL mapping can, in principle, be applied to sc-eQTL mapping, there are a number of open questions about how best to process scRNA-seq data and adapt bulk methods to optimise sc-eQTL mapping. Here, we evaluate the role of different normalisation and aggregation strategies, covariate adjustment techniques, and multiple testing correction methods to establish best practice guidelines. We use both real and simulated datasets across single-cell technologies to systematically assess the impact of these different statistical approaches and provide recommendations for future single-cell eQTL studies that can yield up to twice as many eQTL discoveries as default approaches ported from bulk studies.


2014 ◽  
Author(s):  
Harm-Jan Westra ◽  
Danny Arends ◽  
Tõnu Esko ◽  
Marjolein J. Peters ◽  
Claudia Schurmann ◽  
...  

Expression quantitative trait locus (eQTL) mapping on tissue, organ or whole organism data can detect associations that are generic across cell types. We describe a new method to focus upon specific cell types without first needing to sort cells. We applied the method to whole blood data from 5,683 samples and demonstrate that SNPs associated with Crohn’s disease preferentially affect gene expression within neutrophils.


2008 ◽  
Vol 7 (8) ◽  
pp. 1403-1414 ◽  
Author(s):  
Jon P. Boyle ◽  
Jeroen P. J. Saeij ◽  
Scott Y. Harada ◽  
Jim W. Ajioka ◽  
John C. Boothroyd

ABSTRACT Toxoplasma gondii is an intracellular parasite with a significant impact on human health, especially in cases where individuals are immunocompromised (e.g., due to human immunodeficiency virus/AIDS). In Europe and North America, only a few clonal genotypes appear to be responsible for the vast majority of Toxoplasma infections, and these clonotypes have been intensely studied to identify strain-specific phenotypes that may play a role in the manifestation of more-severe disease. To identify and genetically map strain-specific differences in gene expression, we have carried out expression quantitative trait locus analysis on Toxoplasma gene expression phenotypes by using spotted cDNA microarrays. This led to the identification of 16 Toxoplasma genes that had significant and mappable strain-specific variation in hybridization intensity. While the analysis should identify both cis- and trans-mapping hybridization profiles, we identified only loci with strain-specific hybridization differences that are most likely due to differences in the locus itself (i.e., cis mapping). Interestingly, a larger number of these cis-mapping genes than would be expected by chance encode either confirmed or predicted secreted proteins, many of which are known to localize to the specialized secretory organelles characteristic of members of the phylum Apicomplexa. For six of the cis-mapping loci, we determined if the strain-specific hybridization differences were due to true transcriptional differences or rather to strain-specific differences in hybridization efficiency because of extreme polymorphism and/or deletion, and we found examples of both scenarios.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Yogita Ghodke-Puranik ◽  
Zhongbo Jin ◽  
Kip D. Zimmerman ◽  
Hannah C. Ainsworth ◽  
Wei Fan ◽  
...  

Abstract Background We performed expression quantitative trait locus (eQTL) analysis in single classical (CL) and non-classical (NCL) monocytes from patients with systemic lupus erythematosus (SLE) to quantify the impact of well-established genetic risk alleles on transcription at single-cell resolution. Methods Single-cell gene expression was quantified using qPCR in purified monocyte subpopulations (CD14++CD16− CL and CD14dimCD16+ NCL) from SLE patients. Novel analysis methods were used to control for the within-person correlations observed, and eQTLs were compared between cell types and risk alleles. Results The SLE-risk alleles demonstrated significantly more eQTLs in NCLs as compared to CLs (p = 0.0004). There were 18 eQTLs exclusive to NCL cells, 5 eQTLs exclusive to CL cells, and only one shared eQTL, supporting large differences in the impact of the risk alleles between these monocyte subsets. The SPP1 and TNFAIP3 loci were associated with the greatest number of transcripts. Patterns of shared influence in which different SNPs impacted the same transcript also differed between monocyte subsets, with greater evidence for synergy in NCL cells. IRF1 expression demonstrated an on/off pattern, in which expression was zero in all of the monocytes studied from some individuals, and this pattern was associated with a number of SLE risk alleles. We observed corroborating evidence of this IRF1 expression pattern in public data sets. Conclusions We document multiple SLE-risk allele eQTLs in single monocytes which differ greatly between CL and NCL subsets. These data support the importance of the SPP1 and TNFAIP3 risk variants and the IRF1 transcript in SLE patient monocyte function.


Sign in / Sign up

Export Citation Format

Share Document