regulatory variants
Recently Published Documents


TOTAL DOCUMENTS

277
(FIVE YEARS 126)

H-INDEX

28
(FIVE YEARS 6)

F1000Research ◽  
2022 ◽  
Vol 11 ◽  
pp. 33
Author(s):  
Alexandr Boytsov ◽  
Sergey Abramov ◽  
Vsevolod J. Makeev ◽  
Ivan V. Kulakovskiy

The commonly accepted model to quantify the specificity of transcription factor binding to DNA is the position weight matrix, also called the position-specific scoring matrix. Position weight matrices are used in thousands of projects and computational tools in regulatory genomics, including prediction of the regulatory potential of single-nucleotide variants. Yet, recently Yan et al. presented new experimental method for analysis of regulatory variants and, based on its results, reported that "the position weight matrices of most transcription factors lack sufficient predictive power". Here, we re-analyze the rich experimental dataset obtained by Yan et al. and show that appropriately selected position weight matrices in fact can successfully quantify transcription factor binding to alternative alleles.


2022 ◽  
Author(s):  
Madeleine Carruthers ◽  
Duncan E Edgley ◽  
Andrew D Saxon ◽  
Nestory P Gabagambi ◽  
Asilatu Shechonge ◽  
...  

Rapid ecological speciation along depth gradients has taken place independently and repeatedly in freshwater fishes. While the extent of genomic divergence between ecomorphs is often well understood, the molecular mechanisms facilitating such rapid diversification are typically unclear. In Lake Masoko, an East African crater lake, the cichlid Astatotilapia calliptera has diverged into shallow littoral and deep benthic ecomorphs with strikingly different jaw structures within the last 1,000 years. Using genome-wide transcriptome data from jaw tissue, we explore two major regulatory transcriptional mechanisms, expression and splicing QTL variants and examine their contribution to differential gene expression underpinning functional phenotypes. We identified 7,550 genes with significant differential expression between ecomorphs, of which 4.2% were regulated by cis-regulatory expression QTLs, and 6.4% were regulated by cis-regulatory splicing QTLs. There were also strong signals of divergent selection of differentially expressed genes that showed divergent regulation from expression, splicing or both QTL variants, including genes associated with major jaw plasticity and adaptation networks, adaptive immune system response, and oxidoreductase processes. These results suggest that transcriptome plasticity and modification have important roles during early-stage ecological speciation and demonstrate the role of regulatory-variants as important targets of selection driving ecologically-relevant divergence in gene expression that is associated with adaptive diversification.


2021 ◽  
Author(s):  
Tarang K Mehta ◽  
Luca Penso-Dolfin ◽  
Will K Nash ◽  
Sushmita Roy ◽  
Federica Di Palma ◽  
...  

The divergence of regulatory regions and gene regulatory network (GRN) rewiring is a key driver of cichlid phenotypic diversity. However, the contribution of miRNA binding site turnover has yet to be linked to GRN evolution across cichlids. Here, we extend our previous studies by analysing the selective constraints driving evolution of miRNA and transcription factor (TF) binding sites of target genes, to infer instances of cichlid GRN rewiring associated with regulatory binding site turnover. Comparative analyses identified increased species-specific networks that are functionally associated to traits of cichlid phenotypic diversity. The evolutionary rewiring is associated with differential models of miRNA snd TF binding site turnover, driven by a high proportion of fast-evolving polymorphic sites in adaptive trait genes compared to subsets of random genes. Positive selection acting upon discrete mutations in these regulatory regions is likely to be an important mechanism in rewiring GRNs in rapidly radiating cichlids. Regulatory variants of functionally associated miRNA and TF binding sites of visual opsin genes differentially segregate according to phylogeny and ecology of Lake Malawi species, identifying both rewired e.g. clade-specific and conserved network motifs of adaptive trait associated GRNs. Our approach revealed several novel candidate regulators, regulatory regions and three-node motifs across cichlid genomes with previously reported associations to known adaptive evolutionary traits.


2021 ◽  
Author(s):  
Filipa Esteves ◽  
Joana M. Xavier ◽  
Anthony M. Ford ◽  
Cátia Rocha ◽  
Paul D.P. Pharoah ◽  
...  

Translation of GWAS findings into preventive approaches is challenged by identifying the causal risk variants and understanding their biological mechanisms. We present a novel approach using AE ratios to perform quantitative case-control analysis to identify risk associations, causal regulatory variants, and target genes. Using the breast cancer risk locus 17q22 to validate this approach, we found a significant shift in the AE patterns of STXBP4 (rs2628315) and COX11 (rs17817901) in the normal breast tissue of cases and healthy controls. Preferential expression of the G-rs2628315 and A-rs17817901 alleles, more often observed in cases, was associated with an increased risk for breast cancer. Analysis of blood samples from cases and controls found a similar association. Furthermore, we identified two putative cis-regulatory variants - rs17817901 and rs8066588 - that affect a miRNA and a transcription factor binding site, respectively. Our work reveals the power of integrating AE data in cancer risk studies and presents a novel approach to identifying risk - case-control association analysis using AE ratios.


2021 ◽  
Author(s):  
Silvia F. Zanini ◽  
Philipp E. Bayer ◽  
Rachel Wells ◽  
Rod J. Snowdon ◽  
Jacqueline Batley ◽  
...  

Author(s):  
Hao Lu ◽  
Luyu Ma ◽  
Cheng Quan ◽  
Lei Li ◽  
Yiming Lu ◽  
...  

2021 ◽  
Author(s):  
Cynthia A Kalita ◽  
Alexander Gusev

Background: Expression quantitative trait loci (eQTLs) have been crucial in providing an understanding of how genetic variants influence gene expression. However, eQTLs are known to exert cell type specific effects, and existing methods to identify cell type specific QTLs in bulk data require large sample sizes. Results: Here, we propose DeCAF (DEconvoluted cell type Allele specific Function), a new method to identify cell-fraction (cf) QTLs in tumors by leveraging both allelic and total expression information. Applying DeCAF to RNA-seq data from TCGA, we identified 3,664 genes with cfQTLs (at 10% FDR) in 14 cell types, a 5.63x increase in discovery over conventional interaction-eQTL mapping. cfQTLs replicated in external cell type specific eQTL data and were more enriched for cancer risk than conventional eQTLs. The intersection of tumor-specific QTL effects (tsQTLs) with GWAS loci identified rs4765621 and SCARB1, which has been previously linked to renal cell carcinoma (RCC) progression and experimentally validated in tumors. Conclusions: Our new method, DeCAF, empowers the discovery of biologically meaningful cfQTLs from bulk RNA-seq data in moderately sized studies. Our study contributes to a better understanding of germline mechanisms underlying the anticancer immune response as well as cfQTLs contributing to cancer risk.


2021 ◽  
Author(s):  
Meng Lin ◽  
Pengfei Qiao ◽  
Susanne Matschi ◽  
Miguel Vasquez ◽  
Guillaume P. Ramstein ◽  
...  

The cuticle, a hydrophobic layer of cutin and waxes synthesized by plant epidermal cells, is the major barrier to water loss when stomata are closed. Dissecting the genetic architecture of natural variation for maize leaf cuticular conductance (gc) is important for identifying genes relevant to improving crop productivity in drought-prone environments. To this end, we performed an integrated genome- and transcriptome-wide association study (GWAS/TWAS) to identify candidate genes putatively regulating variation in leaf gc. Of the 22 plausible candidate genes identified, five were predicted to be involved in cuticle precursor biosynthesis and export, two in cell wall modification, nine in intracellular membrane trafficking, and seven in the regulation of cuticle development. A gene encoding an INCREASED SALT TOLERANCE1-LIKE1 (ISTL1) protein putatively involved in intracellular protein and membrane trafficking was identified in GWAS and TWAS as the strongest candidate causal gene. A set of maize nested near-isogenic lines that harbor the ISTL1 genomic region from eight donor parents were evaluated for gc, confirming the association between gc and ISTL1 in a haplotype-based association analysis. The findings of this study provide novel insights into the role of regulatory variants in the development of the maize leaf cuticle, and will ultimately assist breeders to develop drought-tolerant maize for target environments.


2021 ◽  
Author(s):  
Jennifer P. Nguyen ◽  
Agnieszka D'Antonio-Chronowska ◽  
Kyohei Fujita ◽  
Bianca M. Salgado ◽  
Hiroko Matsui ◽  
...  

Pancreatic progenitor cells (PPC) are an early developmental multipotent cell type that give rise to mature endocrine, exocrine, and ductal cells. To investigate the extent to which regulatory variants active in PPC contribute to pancreatic complex traits and disease in the adult, we derived PPC from induced pluripotent stem cells (iPSCs) of nine unrelated individuals and generated single cell profiles of chromatin accessibility (snATAC-seq) and transcriptome (scRNA-seq). While iPSC-PPC differentiation was asynchronous and included cell types from early to late developmental stages, we found that the predominant cell type consisted of NKX6-1+ progenitors. Genetic characterization using snATAC-seq identified 86,261 regulatory variants that either displayed chromatin allelic bias and/or were predicted to affect active transcription factor (TF) binding sites. Integration of these regulatory variants with 380 fine-mapped type 2 diabetes (T2D) risk loci identified regulatory variants in 209 of these loci that are functional in iPSC-PPC, either by affecting transcription factor binding or through association with allelic effects on chromatin accessibility. The PPC active regulatory variants in 65 of these loci showed strong evidence of causally underlying the association with T2D. Our study shows that studying the functional associations of regulatory variation in iPSC-PPC enables the identification and characterization of causal SNPs for adult Type 2 Diabetes.


Author(s):  
Maarten E. A. Reith ◽  
Sandhya Kortagere ◽  
Corinde E. Wiers ◽  
Hui Sun ◽  
Manju A. Kurian ◽  
...  

AbstractThe human dopamine transporter gene SLC6A3 has been consistently implicated in several neuropsychiatric diseases but the disease mechanism remains elusive. In this risk synthesis, we have concluded that SLC6A3 represents an increasingly recognized risk with a growing number of familial mutants associated with neuropsychiatric and neurological disorders. At least five loci were related to common and severe diseases including alcohol use disorder (high activity variant), attention-deficit/hyperactivity disorder (low activity variant), autism (familial proteins with mutated networking) and movement disorders (both regulatory variants and familial mutations). Association signals depended on genetic markers used as well as ethnicity examined. Strong haplotype selection and gene-wide epistases support multimarker assessment of functional variations and phenotype associations. Inclusion of its promoter region’s functional markers such as DNPi (rs67175440) and 5’VNTR (rs70957367) may help delineate condensate-based risk action, testing a locus-pathway-phenotype hypothesis for one gene-multidisease etiology.


Sign in / Sign up

Export Citation Format

Share Document