scholarly journals n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA

2016 ◽  
Vol 9 (1) ◽  
Author(s):  
Virginia Schadeweg ◽  
Eckhard Boles
Author(s):  
Yeon Jung Lee ◽  
Phuong Hoang Nguyen Tran ◽  
Ja Kyong Ko ◽  
Gyeongtaek Gong ◽  
youngsoon um ◽  
...  

Efficient xylose catabolism in engineered Saccharomyces cerevisiae enables more economical lignocellulosic biorefinery with improved production yields per unit of biomass. Yet, the product profile of glucose/xylose co-fermenting S. cerevisiae is mainly limited to bioethanol and a few other chemicals. Here, we introduced an n-butanol-biosynthesis pathway into a glucose/xylose co-fermenting S. cerevisiae strain (XUSEA) to evaluate its potential on the production of acetyl-CoA derived products. Higher n-butanol production of glucose/xylose co-fermenting strain was explained by the transcriptomic landscape, which revealed strongly increased acetyl-CoA and NADPH pools when compared to a glucose fermenting wild-type strain. The acetate supplementation expected to support acetyl-CoA pool further increased n-butanol production, which was also validated during the fermentation of lignocellulosic hydrolysates containing acetate. Our findings imply the feasibility of lignocellulosic biorefinery for producing fuels and chemicals derived from a key intermediate of acetyl-CoA through glucose/xylose co-fermentation.


mBio ◽  
2014 ◽  
Vol 5 (5) ◽  
Author(s):  
Barbara U. Kozak ◽  
Harmen M. van Rossum ◽  
Marijke A. H. Luttik ◽  
Michiel Akeroyd ◽  
Kirsten R. Benjamin ◽  
...  

ABSTRACTThe energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been introduced intoSaccharomyces cerevisiae, such as isoprenoids or lipids. In this yeast, synthesis of cytosolic acetyl-CoA via acetyl-CoA synthetase (ACS) involves hydrolysis of ATP to AMP and pyrophosphate. Here, we demonstrate that expression and assembly in the yeast cytosol of an ATP-independent pyruvate dehydrogenase complex (PDH) fromEnterococcus faecaliscan fully replace the ACS-dependent pathway for cytosolic acetyl-CoA synthesis.In vivoactivity ofE. faecalisPDH required simultaneous expression ofE. faecalisgenes encoding its E1α, E1β, E2, and E3 subunits, as well as genes involved in lipoylation of E2, and addition of lipoate to growth media. A strain lacking ACS that expressed theseE. faecalisgenes grew at near-wild-type rates on glucose synthetic medium supplemented with lipoate, under aerobic and anaerobic conditions. A physiological comparison of the engineered strain and an isogenic Acs+reference strain showed small differences in biomass yields and metabolic fluxes. Cellular fractionation and gel filtration studies revealed that theE. faecalisPDH subunits were assembled in the yeast cytosol, with a subunit ratio and enzyme activity similar to values reported for PDH purified fromE. faecalis. This study indicates that cytosolic expression and assembly of PDH in eukaryotic industrial microorganisms is a promising option for minimizing the energy costs of precursor supply in acetyl-CoA-dependent product pathways.IMPORTANCEGenetically engineered microorganisms are intensively investigated and applied for production of biofuels and chemicals from renewable sugars. To make such processes economically and environmentally sustainable, the energy (ATP) costs for product formation from sugar must be minimized. Here, we focus on an important ATP-requiring process in baker’s yeast (Saccharomyces cerevisiae): synthesis of cytosolic acetyl coenzyme A, a key precursor for many industrially important products, ranging from biofuels to fragrances. We demonstrate that pyruvate dehydrogenase from the bacteriumEnterococcus faecalis, a huge enzyme complex with a size similar to that of a ribosome, can be functionally expressed and assembled in the cytosol of baker’s yeast. Moreover, we show that this ATP-independent mechanism for cytosolic acetyl-CoA synthesis can entirely replace the ATP-costly native yeast pathway. This work provides metabolic engineers with a new option to optimize the performance of baker’s yeast as a “cell factory” for sustainable production of fuels and chemicals.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Liang Sun ◽  
Jae Won Lee ◽  
Sangdo Yook ◽  
Stephan Lane ◽  
Ziqiao Sun ◽  
...  

AbstractPlant cell wall hydrolysates contain not only sugars but also substantial amounts of acetate, a fermentation inhibitor that hinders bioconversion of lignocellulose. Despite the toxic and non-consumable nature of acetate during glucose metabolism, we demonstrate that acetate can be rapidly co-consumed with xylose by engineered Saccharomyces cerevisiae. The co-consumption leads to a metabolic re-configuration that boosts the synthesis of acetyl-CoA derived bioproducts, including triacetic acid lactone (TAL) and vitamin A, in engineered strains. Notably, by co-feeding xylose and acetate, an enginered strain produces 23.91 g/L TAL with a productivity of 0.29 g/L/h in bioreactor fermentation. This strain also completely converts a hemicellulose hydrolysate of switchgrass into 3.55 g/L TAL. These findings establish a versatile strategy that not only transforms an inhibitor into a valuable substrate but also expands the capacity of acetyl-CoA supply in S. cerevisiae for efficient bioconversion of cellulosic biomass.


1977 ◽  
Vol 41 (7) ◽  
pp. 1295-1301
Author(s):  
Tatsuyuki KAMIRYO ◽  
Sampath PARTHASARATHY ◽  
Masayoshi MISHINA ◽  
Yasuhiro IIDA ◽  
Shosaku NUMA

2017 ◽  
Vol 5 (9) ◽  
Author(s):  
Miguel A. Matilla ◽  
Zulema Udaondo ◽  
Tino Krell ◽  
George P. C. Salmond

ABSTRACT Serratia marcescens MSU97 was isolated from the Guayana region of Venezuela due to its ability to suppress plant-pathogenic oomycetes. Here, we report the genome sequence of MSU97, which produces various antibiotics, including the bacterial acetyl-coenzyme A (acetyl-CoA) carboxylase inhibitor andrimid, the chlorinated macrolide oocydin A, and the red linear tripyrrole antibiotic prodigiosin.


1969 ◽  
Vol 29 (2) ◽  
pp. 293-299 ◽  
Author(s):  
John B. Allred ◽  
David G. Guy

Sign in / Sign up

Export Citation Format

Share Document