scholarly journals Glycoside hydrolase gene transcription by Alicyclobacillus acidocaldarius during growth on wheat arabinoxylan and monosaccharides: a proposed xylan hydrolysis mechanism

2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Brady D. Lee ◽  
William A. Apel ◽  
Peter P. Sheridan ◽  
Linda C. DeVeaux
Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 589 ◽  
Author(s):  
Yanbo Hu ◽  
Yan Zhao ◽  
Shuang Tian ◽  
Guocai Zhang ◽  
Yumei Li ◽  
...  

Paenibacillus polymyxa exhibits remarkable hemicellulolytic activity. In the present study, 13 hemicellulose-degrading enzymes were identified from the secreted proteome of P. polymyxa KF-1 by liquid chromatography-tandem mass spectrometry analysis. α-L-arabinofuranosidase is an important member of hemicellulose-degrading enzymes. A novel α-L-arabinofuranosidase (PpAbf51b), belonging to glycoside hydrolase family 51, was identified from P. polymyxa. Recombinant PpAbf51b was produced in Escherichia coli BL21 (DE3) and was found to be a tetramer using gel filtration chromatography. PpAbf51b hydrolyzed neutral arabinose-containing polysaccharides, including sugar beet arabinan, linear-1,5-α-L-arabinan, and wheat arabinoxylan, with L-arabinose as the main product. The products from hydrolysis indicate that PpAbf51b functions as an exo-α-L-arabinofuranosidase. Combining PpAbf51b and Trichoderma longibrachiatum endo-1,4-xylanase produced significant synergistic effects for the degradation of wheat arabinoxylan. The α-L-arabinofuranosidase identified from the secretome of P. polymyxa KF-1 is potentially suitable for application in biotechnological industries.


2016 ◽  
Vol 82 (9) ◽  
pp. 2718-2727 ◽  
Author(s):  
Wei Xia ◽  
Haiqiang Lu ◽  
Mengjuan Xia ◽  
Ying Cui ◽  
Yingguo Bai ◽  
...  

ABSTRACTFew members of glycoside hydrolase (GH) family 113 have been characterized, and information on substrate recognition by and the catalytic mechanism of this family is extremely limited. In the present study, a novel endo-β-1,4-mannanase of GH 113, Man113A, was identified in thermoacidophilicAlicyclobacillussp. strain A4 and found to exhibit both hydrolytic and transglycosylation activities. The enzyme had a broad substrate spectrum, showed higher activities on glucomannan than on galactomannan, and released mannobiose and mannotriose as the main hydrolysis products after an extended incubation. Compared to the only functionally characterized and structure-resolved counterpartAlicyclobacillus acidocaldariusManA (AaManA) of GH 113, Man113A showed much higher catalytic efficiency on mannooligosaccharides, in the order mannohexaose ≈ mannopentaose > mannotetraose > mannotriose, and required at least four sugar units for efficient catalysis. Homology modeling, molecular docking analysis, and site-directed mutagenesis revealed the vital roles of eight residues (Trp13, Asn90, Trp96, Arg97, Tyr196, Trp274, Tyr292, and Cys143) related to substrate recognition by and catalytic mechanism of GH 113. Comparison of the binding pockets and key residues of β-mannanases of different families indicated that members of GH 113 and GH 5 have more residues serving as stacking platforms to support −4 to −1 subsites than those of GH 26 and that the residues preceding the acid/base catalyst are quite different. Taken as a whole, this study elucidates substrate recognition by and the catalytic mechanism of GH 113 β-mannanases and distinguishes them from counterparts of other families.


2001 ◽  
Vol 268 (6) ◽  
pp. 1802-1810
Author(s):  
Danielle Naville ◽  
Estelle Bordet ◽  
Marie-Claude Berthelon ◽  
Philippe Durand ◽  
Martine Begeot

2001 ◽  
Vol 61 (7) ◽  
pp. 61-67 ◽  
Author(s):  
Thomas V. O. Hansen ◽  
Finn C. Nielsen
Keyword(s):  

Virology ◽  
1988 ◽  
Vol 167 (2) ◽  
pp. 568-577 ◽  
Author(s):  
D DANIELS ◽  
M SUBBARAO ◽  
F BLATTNER ◽  
H LOZERON

1972 ◽  
Vol 71 (2_Suppla) ◽  
pp. S346-S368 ◽  
Author(s):  
Roger W. Turkington ◽  
Nobuyuki Kadohama

ABSTRACT Hormonal activation of gene transcription has been studied in a model system, the mouse mammary gland in organ culture. Transcriptive activity is stimulated in mammary stem cells by insulin, and in mammary alveolar cells by prolactin and insulin. Studies on the template requirement for expression of the genes for milk proteins demonstrate that DNA methylation has an obligatory dependence upon DNA synthesis, but is otherwise independent from hormonal regulation of mammary cell differentiation. Incorporation of 5-bromo-2′deoxyuridine into DNA selectively inhibits expression of the genes for specific milk proteins. Undifferentiated mammary cells activate the synthesis of specific acidic nuclear proteins when stimulated by insulin. Several of these induced acidic nuclear proteins are undetectable in unstimulated undifferentiated cells, but appear to be characteristic components of the nuclei of differentiated cells. These results indicate that mammary cell differentiation is associated with a change in acidic nuclear proteins, and they provide evidence to support the concept that acidic nuclear proteins may be involved in the regulation of gene transcription and of mammary cell differentiation.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 2160-P
Author(s):  
ANAND HARDIKAR ◽  
WILSON WONG ◽  
MUGDHA JOGLEKAR ◽  
LOUISE T. DALGAARD ◽  
ALICIA JENKINS ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document