scholarly journals Transcriptomic analysis of the oleaginous yeast Lipomyces starkeyi during lipid accumulation on enzymatically treated corn stover hydrolysate

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Kyle R. Pomraning ◽  
James R. Collett ◽  
Joonhoon Kim ◽  
Ellen A. Panisko ◽  
David E. Culley ◽  
...  
2009 ◽  
Vol 55 (9) ◽  
pp. 1062-1069 ◽  
Author(s):  
Wei Tang ◽  
Sufang Zhang ◽  
Qian Wang ◽  
Haidong Tan ◽  
Zongbao Kent Zhao

The oleaginous yeast Lipomyces starkeyi can accumulate intracellular lipids to over 60% of its cell dry mass under a nitrogen-limited condition. We showed that extracellular and intracellular citrate concentrations of L. starkeyi AS 2.1560 increased and the nicotinamide adenine dinucleotide – isocitrate dehydrogenase (NAD+–IDH) activity decreased at the beginning of the lipid accumulation, suggesting that the attenuation of the NAD+–IDH activity might initiate lipid storage. We next cloned the IDH gene by the methods of degenerate PCR and rapid amplification of cDNA ends. Phylogenetic analyses of the evolutionary relationships among LsIDH1, LsIDH2, and other yeast NAD+–IDHs revealed that the L. starkeyi IDH had a closer relationship with the IDHs of Yarrowia lipolytica . Further real-time PCR analysis showed that the expression levels of both LsIDH1 and LsIDH2 decreased concurrently with the evolution of cellular lipids. Our data should be valuable for understanding the biology of oleaginous yeasts and for further strain engineering of L. starkeyi.


Author(s):  
Ziyu Dai ◽  
Kyle R. Pomraning ◽  
Ellen A. Panisko ◽  
Beth A. Hofstad ◽  
Kristen B. Campbell ◽  
...  

2013 ◽  
Vol 79 (23) ◽  
pp. 7360-7370 ◽  
Author(s):  
John Seip ◽  
Raymond Jackson ◽  
Hongxian He ◽  
Quinn Zhu ◽  
Seung-Pyo Hong

ABSTRACTIn the oleaginous yeastYarrowia lipolytica,de novolipid synthesis and accumulation are induced under conditions of nitrogen limitation (or a high carbon-to-nitrogen ratio). The regulatory pathway responsible for this induction has not been identified. Here we report that the SNF1 pathway plays a key role in the transition from the growth phase to the oleaginous phase inY. lipolytica. Strains with aY. lipolyticasnf1(Ylsnf1) deletion accumulated fatty acids constitutively at levels up to 2.6-fold higher than those of the wild type. When introduced into aY. lipolyticastrain engineered to produce omega-3 eicosapentaenoic acid (EPA),Ylsnf1deletion led to a 52% increase in EPA titers (7.6% of dry cell weight) over the control. Other components of theY. lipolyticaSNF1 pathway were also identified, and their function in limiting fatty acid accumulation is suggested by gene deletion analyses. Deletion of the gene encoding YlSnf4, YlGal83, or YlSak1 significantly increased lipid accumulation in both growth and oleaginous phases compared to the wild type. Furthermore, microarray and quantitative reverse transcription-PCR (qRT-PCR) analyses of theYlsnf1mutant identified significantly differentially expressed genes duringde novolipid synthesis and accumulation inY. lipolytica. Gene ontology analysis found that these genes were highly enriched with genes involved in lipid metabolism. This work presents a new role for Snf1/AMP-activated protein kinase (AMPK) pathways in lipid accumulation in this oleaginous yeast.


2017 ◽  
Vol 10 (1) ◽  
Author(s):  
Xiaoqing Wang ◽  
Davinia Salvachúa ◽  
Violeta Sànchez i Nogué ◽  
William E. Michener ◽  
Adam D. Bratis ◽  
...  

2019 ◽  
Vol 233-234 ◽  
pp. 840-853 ◽  
Author(s):  
James R. Collett ◽  
Justin M. Billing ◽  
Pimphan A. Meyer ◽  
Andrew J. Schmidt ◽  
A. Brook Remington ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document