scholarly journals Snf1 Is a Regulator of Lipid Accumulation in Yarrowia lipolytica

2013 ◽  
Vol 79 (23) ◽  
pp. 7360-7370 ◽  
Author(s):  
John Seip ◽  
Raymond Jackson ◽  
Hongxian He ◽  
Quinn Zhu ◽  
Seung-Pyo Hong

ABSTRACTIn the oleaginous yeastYarrowia lipolytica,de novolipid synthesis and accumulation are induced under conditions of nitrogen limitation (or a high carbon-to-nitrogen ratio). The regulatory pathway responsible for this induction has not been identified. Here we report that the SNF1 pathway plays a key role in the transition from the growth phase to the oleaginous phase inY. lipolytica. Strains with aY. lipolyticasnf1(Ylsnf1) deletion accumulated fatty acids constitutively at levels up to 2.6-fold higher than those of the wild type. When introduced into aY. lipolyticastrain engineered to produce omega-3 eicosapentaenoic acid (EPA),Ylsnf1deletion led to a 52% increase in EPA titers (7.6% of dry cell weight) over the control. Other components of theY. lipolyticaSNF1 pathway were also identified, and their function in limiting fatty acid accumulation is suggested by gene deletion analyses. Deletion of the gene encoding YlSnf4, YlGal83, or YlSak1 significantly increased lipid accumulation in both growth and oleaginous phases compared to the wild type. Furthermore, microarray and quantitative reverse transcription-PCR (qRT-PCR) analyses of theYlsnf1mutant identified significantly differentially expressed genes duringde novolipid synthesis and accumulation inY. lipolytica. Gene ontology analysis found that these genes were highly enriched with genes involved in lipid metabolism. This work presents a new role for Snf1/AMP-activated protein kinase (AMPK) pathways in lipid accumulation in this oleaginous yeast.

2019 ◽  
Vol 86 (3) ◽  
Author(s):  
Caleb Walker ◽  
Seunghyun Ryu ◽  
Richard J. Giannone ◽  
Sergio Garcia ◽  
Cong T. Trinh

ABSTRACT Thiamine is a vitamin that functions as a cofactor for key enzymes in carbon and energy metabolism in all living cells. While most plants, fungi, and bacteria can synthesize thiamine de novo, the oleaginous yeast Yarrowia lipolytica cannot. In this study, we used proteomics together with physiological characterization to elucidate key metabolic processes influenced and regulated by thiamine availability and to identify the genetic basis of thiamine auxotrophy in Y. lipolytica. Specifically, we found that thiamine depletion results in decreased protein abundance for the lipid biosynthesis pathway and energy metabolism (i.e., ATP synthase), leading to the negligible growth and poor sugar assimilation observed in our study. Using comparative genomics, we identified the missing 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate synthase (THI13) gene for the de novo thiamine biosynthesis in Y. lipolytica and discovered an exceptional promoter, P3, that exhibits strong activation and tight repression by low and high thiamine concentrations, respectively. Capitalizing on the strength of our thiamine-regulated promoter (P3) to express the missing gene from Saccharomyces cerevisiae (scTHI13), we engineered a thiamine-prototrophic Y. lipolytica strain. By comparing this engineered strain to the wild-type strain, we revealed the tight relationship between thiamine availability and lipid biosynthesis and demonstrated enhanced lipid production with thiamine supplementation in the engineered thiamine-prototrophic Y. lipolytica strain. IMPORTANCE Thiamine plays a crucial role as an essential cofactor for enzymes involved in carbon and energy metabolism in all living cells. Thiamine deficiency has detrimental consequences for cellular health. Yarrowia lipolytica, a nonconventional oleaginous yeast with broad biotechnological applications, is a native thiamine auxotroph whose affected cellular metabolism is not well understood. Therefore, Y. lipolytica is an ideal eukaryotic host for the study of thiamine metabolism, especially because mammalian cells are also thiamine auxotrophic and thiamine deficiency is implicated in several human diseases. This study elucidates the fundamental effects of thiamine deficiency on cellular metabolism in Y. lipolytica and identifies genes and novel thiamine-regulated elements that eliminate thiamine auxotrophy in Y. lipolytica. Furthermore, the discovery of thiamine-regulated elements enables the development of thiamine biosensors with useful applications in synthetic biology and metabolic engineering.


mSystems ◽  
2021 ◽  
Author(s):  
Caleb Walker ◽  
Bruce Dien ◽  
Richard J. Giannone ◽  
Patricia Slininger ◽  
Stephanie R. Thompson ◽  
...  

Yarrowia lipolytica is an important industrial oleaginous yeast due to its robust phenotypes for effective conversion of inhibitory lignocellulosic biomass hydrolysates into neutral lipids. While lipid accumulation has been well characterized in this organism, its interconnected lipid degradation phenotype is poorly understood during fermentation of biomass hydrolysates.


2019 ◽  
Vol 8 (4) ◽  
Author(s):  
Hugo Devillers ◽  
Cécile Neuvéglise

Here, we report the genome sequence of the oleaginous yeast Yarrowia lipolytica H222. De novo genome assembly shows three main chromosomal rearrangements compared to that of strain E150/CLIB122.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A950-A950
Author(s):  
Mara De Martino ◽  
Camille Daviaud ◽  
Claire Vanpouille-Box

BackgroundGlioblastoma (GBM) is the most aggressive and incurable adult brain tumor. Radiation therapy (RT) is an essential modality for GBM treatment and is recognized to stimulate anti-tumor immunity by inducing immunogenic cell death (ICD) subsequent to endoplasmic reticulum (ER) stress. However, RT also exacerbates potent immunosuppressive mechanisms that facilitate immune evasion. Notably, increased de novo lipid synthesis by the fatty acid synthase (FASN) is emerging as a mechanism of therapy resistance and immune escape. Here, we hypothesize that RT induces FASN to promote GBM survival and evade immune recognition by inhibiting ER stress and ICD.MethodsTo determine if lipid synthesis is altered in response to RT, we first assessed FASN expression by western blot (WB) and lipid accumulation by BODIPY staining in murine (CT2A and GL261) and human (U118) GBM cell lines. Next, FASN expression was blocked in CT2A cells using CRISPR-Cas9 or an inducible shRNA directed against Fasn to evaluate ICD and ER stress markers by ELISA, WB, and electron microscopy. Finally, CT2AshFASN cells or its non-silencing control (CT2AshNS) were orthotopically implanted and FASN knockdown was induced by feeding the mice with doxycycline. The immune contexture was determined by in situ immunofluorescence (n=3/group). Remaining mice were followed for survival (n=7/group).ResultsWe found that in vitro irradiation of GBM cells induces lipid accumulation in a dose-dependent fashion; an effect that is magnified over time lasting at least 6/7 days. Consistent with these findings, FASN expression was upregulated in irradiated GBM cells. Confirming the role of FASN, RT-induced accumulation of lipids was reverted when GBM cells were incubated with a FASN inhibitor. Next, we found that FASN ablation in CT2A cells induces mitochondria disruption and was sufficient to increase the expression of the ER stress makers BIP and CHOP. Along similar lines, shFASN enhances the secretion of the ICD markers HMGB1, IFN-beta and CXCL10 in irradiated CT2A cells. In vivo, CT2AshFASN tumors presented increased infiltration of CD11c+ cells and CD8+ T cells, consistent with prolonged mice survival (56 days vs. 28 days for CT2AshNS). Importantly, 43% of CT2AshFASN-bearing mice remained tumor-free for more than 70 days, while none of the CT2AshNS-bearing mice survived.ConclusionsAltogether, our data suggest that FASN-mediated lipid synthesis is an important mechanism to prevent ER stress, ICD, and anti-tumor immune responses in GBM. While much work remains to be done, our data propose FASN as a novel therapeutic target to overcome immunosuppression and sensitize GBM to immunotherapies.


2019 ◽  
Vol 201 (20) ◽  
Author(s):  
Elizabeth A. Walker ◽  
Gary C. Port ◽  
Michael G. Caparon ◽  
Blythe E. Janowiak

ABSTRACT Streptococcus agalactiae, a leading cause of sepsis and meningitis in neonates, utilizes multiple virulence factors to survive and thrive within the human host during an infection. Unique among the pathogenic streptococci, S. agalactiae uses a bifunctional enzyme encoded by a single gene (gshAB) to synthesize glutathione (GSH), a major antioxidant in most aerobic organisms. Since S. agalactiae can also import GSH, similar to all other pathogenic streptococcal species, the contribution of GSH synthesis to the pathogenesis of S. agalactiae disease is not known. In the present study, gshAB deletion mutants were generated in strains representing three of the most prevalent clinical serotypes of S. agalactiae and were compared against isogenic wild-type and gshAB knock-in strains. When cultured in vitro in a chemically defined medium under nonstress conditions, each mutant and its corresponding wild type had comparable growth rates, generation times, and growth yields. However, gshAB deletion mutants were found to be more sensitive than wild-type or gshAB knock-in strains to killing and growth inhibition by several different reactive oxygen species. Furthermore, deletion of gshAB in S. agalactiae strain COH1 significantly attenuated virulence compared to the wild-type or gshAB knock-in strains in a mouse model of sepsis. Taken together, these data establish that GSH is a virulence factor important for resistance to oxidative stress and that de novo GSH synthesis plays a crucial role in S. agalactiae pathogenesis and further suggest that the inhibition of GSH synthesis may provide an opportunity for the development of novel therapies targeting S. agalactiae disease. IMPORTANCE Approximately 10 to 30% of women are naturally and asymptomatically colonized by Streptococcus agalactiae. However, transmission of S. agalactiae from mother to newborn during vaginal birth is a leading cause of neonatal meningitis. Although colonized mothers who are at risk for transmission to the newborn are treated with antibiotics prior to delivery, S. agalactiae is becoming increasingly resistant to current antibiotic therapies, and new treatments are needed. This research reveals a critical stress resistance pathway, glutathione synthesis, that is utilized by S. agalactiae and contributes to its pathogenesis. Understanding the role of this unique bifunctional glutathione synthesis enzyme in S. agalactiae during sepsis may help elucidate why S. agalactiae produces such an abundance of glutathione compared to other bacteria.


2015 ◽  
Vol 59 (8) ◽  
pp. 5057-5060 ◽  
Author(s):  
Karine Soetaert ◽  
Céline Rens ◽  
Xiao-Ming Wang ◽  
Jacqueline De Bruyn ◽  
Marie-Antoinette Lanéelle ◽  
...  

ABSTRACTMycobacterium tuberculosisis wrapped in complex waxes, impermeable to most antibiotics. ComparingMycobacterium bovisBCG andM. tuberculosismutants that lack phthiocerol dimycocerosates (PDIM) and/or phenolic glycolipids with wild-type strains, we observed that glycopeptides strongly inhibited PDIM-deprived mycobacteria. Vancomycin together with a drug targeting lipid synthesis inhibited multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical isolates. Our study puts glycopeptides in the pipeline of potential antituberculosis (TB) agents and might provide a new antimycobacterial drug-screening strategy.


2019 ◽  
Vol 7 (10) ◽  
pp. 472 ◽  
Author(s):  
Larissa Ribeiro Ramos Tramontin ◽  
Kanchana Rueksomtawin Kildegaard ◽  
Suresh Sudarsan ◽  
Irina Borodina

Astaxanthin is a high-value red pigment and antioxidant used by pharmaceutical, cosmetics, and food industries. The astaxanthin produced chemically is costly and is not approved for human consumption due to the presence of by-products. The astaxanthin production by natural microalgae requires large open areas and specialized equipment, the process takes a long time, and results in low titers. Recombinant microbial cell factories can be engineered to produce astaxanthin by fermentation in standard equipment. In this work, an oleaginous yeast Yarrowia lipolytica was engineered to produce astaxanthin at high titers in submerged fermentation. First, a platform strain was created with an optimised pathway towards β-carotene. The platform strain produced 331 ± 66 mg/L of β-carotene in small-scale cultivation, with the cellular content of 2.25% of dry cell weight. Next, the genes encoding β-ketolase and β-hydroxylase of bacterial (Paracoccus sp. and Pantoea ananatis) and algal (Haematococcus pluvialis) origins were introduced into the platform strain in different copy numbers. The resulting strains were screened for astaxanthin production, and the best strain, containing algal β-ketolase and β-hydroxylase, resulted in astaxanthin titer of 44 ± 1 mg/L. The same strain was cultivated in controlled bioreactors, and a titer of 285 ± 19 mg/L of astaxanthin was obtained after seven days of fermentation on complex medium with glucose. Our study shows the potential of Y. lipolytica as the cell factory for astaxanthin production.


2008 ◽  
Vol 74 (24) ◽  
pp. 7779-7789 ◽  
Author(s):  
Athanasios Beopoulos ◽  
Zuzana Mrozova ◽  
France Thevenieau ◽  
Marie-Thérèse Le Dall ◽  
Ivan Hapala ◽  
...  

ABSTRACT A genomic comparison of Yarrowia lipolytica and Saccharomyces cerevisiae indicates that the metabolism of Y. lipolytica is oriented toward the glycerol pathway. To redirect carbon flux toward lipid synthesis, the GUT2 gene, which codes for the glycerol-3-phosphate dehydrogenase isomer, was deleted in Y. lipolytica in this study. This Δgut2 mutant strain demonstrated a threefold increase in lipid accumulation compared to the wild-type strain. However, mobilization of lipid reserves occurred after the exit from the exponential phase due to β-oxidation. Y. lipolytica contains six acyl-coenzyme A oxidases (Aox), encoded by the POX1 to POX6 genes, that catalyze the limiting step of peroxisomal β-oxidation. Additional deletion of the POX1 to POX6 genes in the Δgut2 strain led to a fourfold increase in lipid content. The lipid composition of all of the strains tested demonstrated high proportions of FFA. The size and number of the lipid bodies in these strains were shown to be dependent on the lipid composition and accumulation ratio.


2011 ◽  
Vol 10 (11) ◽  
pp. 1448-1454 ◽  
Author(s):  
Shantanu Ganguly ◽  
Andrew C. Bishop ◽  
Wenjie Xu ◽  
Suman Ghosh ◽  
Kenneth W. Nickerson ◽  
...  

ABSTRACTBiofilms ofCandida albicansinclude both yeast cells and hyphae. Prior studies indicated that azap1Δ/Δ mutant, defective in zinc regulator Zap1, has increased accumulation of yeast cells in biofilms. This altered yeast-hypha balance may arise from internal regulatory alterations or from an effect on the production of diffusible quorum-sensing (QS) molecules. Here, we develop biosensor reporter strains that express yeast-specificYWP1-RFPor hypha-specificHWP1-RFP, along with a constitutiveTDH3-GFPnormalization standard. Seeding these biosensor strains into biofilms allows a biological activity assay of the surrounding biofilm milieu. Azap1Δ/Δ biofilm induces the yeast-specificYWP1-RFPreporter in a wild-type biosensor strain, as determined by both quantitative reverse transcription-PCR (qRT-PCR) gene expression measurements and confocal microscopy. Remediation of thezap1Δ/Δ zinc uptake defect through zinc transporter geneZRT2overexpression reverses induction of the yeast-specificYWP1-RFPreporter. Gas chromatography-mass spectrometry (GC-MS) measurements of known organic QS molecules show that thezap1Δ/Δ mutant accumulates significantly less farnesol than wild-type or complemented strains and thatZRT2overexpression does not affect farnesol accumulation. Farnesol is a well-characterized inhibitor of hypha formation; hence, a reduction in farnesol levels inzap1Δ/Δ biofilms is unexpected. Our findings argue that a Zap1- and zinc-dependent signal affects the yeast-hypha balance and that it is operative in the low-farnesol environment of thezap1Δ/Δ biofilm. In addition, our results indicate that Zap1 is a positive regulator of farnesol accumulation.


2013 ◽  
Vol 79 (15) ◽  
pp. 4586-4594 ◽  
Author(s):  
Masato Ikeda ◽  
Aya Miyamoto ◽  
Sumire Mutoh ◽  
Yuko Kitano ◽  
Mei Tajima ◽  
...  

ABSTRACTTo develop the infrastructure for biotin production through naturally biotin-auxotrophicCorynebacterium glutamicum, we attempted to engineer the organism into a biotin prototroph and a biotin hyperauxotroph. To confer biotin prototrophy on the organism, the cotranscribedbioBFgenes ofEscherichia coliwere introduced into theC. glutamicumgenome, which originally lacked thebioFgene. The resulting strain still required biotin for growth, but it could be replaced by exogenous pimelic acid, a source of the biotin precursor pimelate thioester linked to either coenzyme A (CoA) or acyl carrier protein (ACP). To bridge the gap between the pimelate thioester and its dedicated precursor acyl-CoA (or -ACP), thebioIgene ofBacillus subtilis, which encoded a P450 protein that cleaves a carbon-carbon bond of an acyl-ACP to generate pimeloyl-ACP, was further expressed in the engineered strain by using a plasmid system. This resulted in a biotin prototroph that is capable of thede novosynthesis of biotin. On the other hand, thebioYgene responsible for biotin uptake was disrupted in wild-typeC. glutamicum. Whereas the wild-type strain required approximately 1 μg of biotin per liter for normal growth, thebioYdisruptant (ΔbioY) required approximately 1 mg of biotin per liter, almost 3 orders of magnitude higher than the wild-type level. The ΔbioYstrain showed a similar high requirement for the precursor dethiobiotin, a substrate forbioB-encoded biotin synthase. To eliminate the dependency on dethiobiotin, thebioBgene was further disrupted in both the wild-type strain and the ΔbioYstrain. By selectively using the resulting two strains (ΔbioBand ΔbioBY) as indicator strains, we developed a practical biotin bioassay system that can quantify biotin in the seven-digit range, from approximately 0.1 μg to 1 g per liter. This bioassay proved that the engineered biotin prototroph ofC. glutamicumproduced biotin directly from glucose, albeit at a marginally detectable level (approximately 0.3 μg per liter).


Sign in / Sign up

Export Citation Format

Share Document