scholarly journals Comprehensive understanding of the effects of metallic cations on enzymatic hydrolysis of humic acid-pretreated waste wheat straw

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Wei Tang ◽  
Xinxing Wu ◽  
Caoxing Huang ◽  
Zhe Ling ◽  
Chenhuan Lai ◽  
...  

Abstract Background Humic acids (HA) have been used in biorefinery process due to its surfactant properties as an aid to the pretreatment of lignocellulose, with results indicating a positive effect on delignification. However, the HA remaining on the surface of the pretreated lignocellulose has also been shown to provide a negative effect on ensuing enzymatic digestibility. Hence, a strategy of complexing metallic cations with HA prior to enzymatic hydrolysis was proposed and demonstrated in this work in an effort to provide a means of HA mitigation that does not involve significant water consumption via extensive washing. Results Results showed that the enzymatic hydrolysis efficiency of waste wheat straw decreased from 81.9% to 66.1% when it was pretreated by 10 g/L HA, attributed to the inhibition ability of the residual HA on enzyme activity of cellulase with a debasement of 36.3%. Interestingly, enzymatic hydrolysis efficiency could be increased from 66.1% to 77.3% when 10 mM Fe3+ was introduced to the system and allowed to associate with HA during saccharification. Conclusions The addition of high-priced metallic cations (Fe3+) has successfully alleviated the effect of HA on cellulase activity. It is our hope in demonstrating the complexation affinity between metallic cations and HA, future researchers and biorefinery developers will evaluate this strategy as a unit operation that could allow economic biorefining of WWS to produce valuable biochemicals, biofuels, and biomaterials.

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1360
Author(s):  
Ekaterina Budenkova ◽  
Stanislav Sukhikh ◽  
Svetlana Ivanova ◽  
Olga Babich ◽  
Vyacheslav Dolganyuk ◽  
...  

Enzymatic hydrolysis of cellulose-containing raw materials, using Aspergillus niger, were studied. Filter paper, secondary cellulose-containing or starch-containing raw materials, miscanthus cellulose after alkaline or acid pretreatment, and wood chip cellulose, were used as substrates. The study focused on a wild A. niger strain, treated, or not (control), by ultraviolet (UV) irradiations for 45, 60, or 120 min (UV45, UV60, or UV120), or by UV irradiation for 120 min followed by a chemical treatment with NaN3 + ItBr for 30 min or 80 min (UV120 + CH30 or UV120 + CH80). A mixture of all the A. niger strains (MIX) was also tested. A citrate buffer, at 50 mM, wasthe most suitable for enzymatic hydrolysis. As the UV exposure time increased to 2 h, the cellulase activity of the surviving culturewas increased (r = 0.706; p < 0.05). The enzymatic activities of the obtained strains, towards miscanthus cellulose, wood chips, and filter paper, were inferior to those obtained with commercial enzymes (8.6 versus 9.1 IU), in some cases. Under stationary hydrolysis at 37 °C, pH = 4.7, the enzymatic activity of A. niger UV120 + CH30 was 24.9 IU. The enzymatic hydrolysis of secondary raw materials, using treated A. niger strains, was themost effective at 37 °C. Similarly, the most effective treatment of miscanthus cellulose and wood chips occurred at 50 °C. The maximum conversion of cellulose to glucose was observed using miscanthus cellulose (with alkaline pretreatment), and the minimum conversion was observed when using wood chips. The greatest value of cellulase activity was evidenced in the starch-containing raw materials, indicating that A. niger can ferment not only through cellulase activity, but also via an amylolytic one.


2012 ◽  
Vol 87 (2) ◽  
pp. 1280-1285 ◽  
Author(s):  
Greta Radeva ◽  
Ivo Valchev ◽  
Stoiko Petrin ◽  
Eva Valcheva ◽  
Petya Tsekova

2010 ◽  
Vol 85 (9) ◽  
pp. 1291-1297 ◽  
Author(s):  
Pablo Alvira ◽  
María José Negro ◽  
Felicia Sáez ◽  
Mercedes Ballesteros

2018 ◽  
Vol 102 (22) ◽  
pp. 9831-9842 ◽  
Author(s):  
Mengjie Wu ◽  
Hongyu Liu ◽  
Junyuan Guo ◽  
Chunping Yang

2015 ◽  
Vol 175 ◽  
pp. 75-81 ◽  
Author(s):  
Jinping Zhang ◽  
Wei Liu ◽  
Qingxi Hou ◽  
Junwei Chen ◽  
Ningpan Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document