scholarly journals Developmental dynamics of voltage-gated sodium channel isoform expression in the human and mouse brain

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Lindsay Liang ◽  
Siavash Fazel Darbandi ◽  
Sirisha Pochareddy ◽  
Forrest O. Gulden ◽  
Michael C. Gilson ◽  
...  

Abstract Background Genetic variants in the voltage-gated sodium channels SCN1A, SCN2A, SCN3A, and SCN8A are leading causes of epilepsy, developmental delay, and autism spectrum disorder. The mRNA splicing patterns of all four genes vary across development in the rodent brain, including mutually exclusive copies of the fifth protein-coding exon detected in the neonate (5N) and adult (5A). A second pair of mutually exclusive exons is reported in SCN8A only (18N and 18A). We aimed to quantify the expression of individual exons in the developing human brain. Methods RNA-seq data from 783 human brain samples across development were analyzed to estimate exon-level expression. Developmental changes in exon utilization were validated by assessing intron splicing. Exon expression was also estimated in RNA-seq data from 58 developing mouse neocortical samples. Results In the mature human neocortex, exon 5A is consistently expressed at least 4-fold higher than exon 5N in all four genes. For SCN2A, SCN3A, and SCN8A, a brain-wide synchronized 5N to 5A transition occurs between 24 post-conceptual weeks (2nd trimester) and 6 years of age. In mice, the equivalent 5N to 5A transition begins at or before embryonic day 15.5. In SCN8A, over 90% of transcripts in the mature human cortex include exon 18A. Early in fetal development, most transcripts include 18N or skip both 18N and 18A, with a transition to 18A inclusion occurring from 13 post-conceptual weeks to 6 months of age. No other protein-coding exons showed comparably dynamic developmental trajectories. Conclusions Exon usage in SCN1A, SCN2A, SCN3A, and SCN8A changes dramatically during human brain development. These splice isoforms, which alter the biophysical properties of the encoded channels, may account for some of the observed phenotypic differences across development and between specific variants. Manipulation of the proportion of splicing isoforms at appropriate stages of development may act as a therapeutic strategy for specific mutations or even epilepsy in general.

2020 ◽  
Author(s):  
Lindsay Liang ◽  
Siavash Fazel Darbandi ◽  
Sirisha Pochareddy ◽  
Forrest O. Gulden ◽  
Michael C. Gilson ◽  
...  

AbstractObjectiveGenetic variants in the voltage-gated sodium channels SCN1A, SCN2A, SCN3A, and SCN8A are leading causes of epilepsy, developmental delay, and autism spectrum disorder. The mRNA splicing patterns of all four genes vary across development in the rodent brain, including mutually exclusive copies of the fifth protein-coding exon detected in the neonate (5N) and adult (5A). A second pair of mutually exclusive exons is reported in SCN8A only (18N and 18A). We aimed to quantify the expression of individual exons in the developing human neocortex.MethodsRNA-seq data from 176 human dorsolateral prefrontal cortex samples across development were analyzed to estimate exon-level expression. Developmental changes in exon utilization were validated by assessing intron splicing. Exon expression was also estimated in RNA-seq data from 58 developing mouse neocortical samples.ResultsIn the mature human neocortex, exon 5A is consistently expressed at least 4-fold higher than exon 5N in all four genes. For SCN2A, SCN3A, and SCN8A a synchronized 5N/5A transition occurs between 24 post-conceptual weeks (2nd trimester) and six years of age. In mice, the equivalent 5N/5A transition begins at or before embryonic day 15.5. In SCN8A, over 90% of transcripts in the mature human cortex include exon 18A. Early in fetal development, most transcripts include 18N or skip both 18N and 18A, with a transition to 18A inclusion occurring from 13 post-conceptual weeks to 6 months of age. No other protein-coding exons showed comparably dynamic developmental trajectories.SignificanceSplice isoforms, which alter the biophysical properties of the encoded channels, may account for some of the observed phenotypic differences across development and between specific variants. Manipulation of the proportion of splicing isoforms at appropriate stages of development may act as a therapeutic strategy for specific mutations or even epilepsy in general.


2017 ◽  
Author(s):  
Timothy Sterne-Weiler ◽  
Robert J. Weatheritt ◽  
Andrew Best ◽  
Kevin C. H. Ha ◽  
Benjamin J. Blencowe

AbstractAlternative splicing (AS) is a widespread process underlying the generation of transcriptomic and proteomic diversity in metazoans. Major challenges in comprehensively detecting and quantifying patterns of AS are that RNA-seq datasets are expanding near exponentially, while existing analysis tools are computationally inefficient and ineffective at handling complex splicing patterns. Here, we describe Whippet, a method that rapidly, and with minimal hardware requirements, models and quantifies splicing events of any complexity without significant loss of accuracy. Using an entropic measure of splicing complexity, Whippet reveals that approximately 33% of human protein coding genes contain complex AS events that result in substantial expression of multiple splice isoforms. These events frequently affect tandem arrays of folded protein domains. Remarkably, high-entropy AS events are more prevalent in tumour relative to matched normal tissues, and these differences correlate with increased expression of proto-oncogenic splicing factors. Whippet thus affords the rapid and accurate analysis of AS events of any complexity, and as such will facilitate biomedical research.


Sign in / Sign up

Export Citation Format

Share Document