scholarly journals Restoration of keratinocytic phenotypes in autonomous trisomy-rescued cells

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Akiko Tanuma-Takahashi ◽  
Momoko Inoue ◽  
Kazuhiro Kajiwara ◽  
Ryo Takagi ◽  
Ayumi Yamaguchi ◽  
...  

Abstract Background An extra copy of chromosome 21 in humans can alter cellular phenotypes as well as immune and metabolic systems. Down syndrome is associated with many health-related problems and age-related disorders including dermatological abnormalities. However, few studies have focused on the impact of trisomy 21 (T21) on epidermal stem cells and progenitor cell dysfunction. Here, we investigated the differences in keratinocytic characteristics between Down syndrome and euploid cells by differentiating cells from trisomy 21-induced pluripotent stem cells (T21-iPSCs) and autonomous rescued disomy 21-iPSCs (D21-iPSCs). Methods Our protocol for keratinocytic differentiation of T21-iPSCs and D21-iPSCs was employed. For propagation of T21- and D21-iPSC-derived keratinocytes and cell sheet formation, the culture medium supplemented with Rho kinase inhibitor on mouse feeder cells was introduced as growth rate decreased. Before passaging, selection of a keratinocytic population with differential dispase reactivity was performed. Three-dimensional (3D) air-liquid interface was performed in order to evaluate the ability of iPSC-derived keratinocytes to differentiate and form stratified squamous epithelium. Results Trisomy-rescued disomy 21-iPSCs were capable of epidermal differentiation and expressed keratinocytic markers such as KRT14 and TP63 upon differentiation compared to trisomy 21-iPSCs. The lifespan of iPSC-derived keratinocytes could successfully be extended on mouse feeder cells in media containing Rho kinase inhibitor, to more than 34 population doublings over a period of 160 days. Dispase-based purification of disomy iPSC-derived keratinocytes contributed epidermal sheet formation. The trisomy-rescued disomy 21-iPSC-derived keratinocytes with an expanded lifespan generated 3D skin in combination with a dermal fibroblast component. Conclusions Keratinocytes derived from autonomous trisomy-rescued iPSC have the ability of stratification for manufacturing 3D skin with restoration of keratinocytic functions.

2014 ◽  
Vol 45 (6) ◽  
pp. 707-714 ◽  
Author(s):  
Xiao Liu ◽  
Zhengzheng Zhang ◽  
Xianliang Yan ◽  
He Liu ◽  
Licai Zhang ◽  
...  

2011 ◽  
Vol 26 (3) ◽  
pp. 281-285 ◽  
Author(s):  
Kota Komiyama ◽  
Tamotsu Tejima ◽  
Yasuhiro Tanabe ◽  
Takuro Nishimura ◽  
Ken Kitamura ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4946-4946
Author(s):  
Gina Mundschau ◽  
Sarah Jilani ◽  
Hui Liu ◽  
Elizabeth Davis ◽  
Michelle Le Beau ◽  
...  

Abstract Trisomy 21 causes human Down syndrome (DS), a heterogeneous group of phenotypes including marked predisposition to leukemia. Children with Down syndrome are 500 times more likely to develop acute megakaryoblastic leukemia (AMKL) than other children. Furthermore, non-DS children with AMKL often have acquired trisomy 21 in their leukemic clones, suggesting that trisomy 21 in hematopoietic cells contributes to leukemic transformation. To better understand the impact of trisomy 21 on blood cell homeostasis and leukemia, we studied hematopoiesis in the Ts65Dn mouse model of Down syndrome. Ts65Dn mice harbor a segmental trisomy for mouse chromosome 16, homologous to human chromosome 21, and display many of the phenotypes associated with human DS, including craniofacial anomalies and learning deficits. To define the hematopoietic parameters for this strain, we performed monthly complete blood counts for a cohort of trisomic mice and their disomic littermates and discovered the development of progressive thrombocytosis and mild anemia in trisomic animals. Increased numbers of CD41+ megakaryocytes with lower modal ploidy were detected in the bone marrow and spleen of Ts65Dn mice as early as three months of age. Over time, expansion of the megakaryocyte population was accompanied by a decrease in TER119+ cells in the bone marrow, myelofibrosis, splenomegaly, and extramedullary hematopoiesis. Colony forming assays demonstrated increased colony forming ability in the spleens of trisomic mice along with variable decreased hematopoiesis in the bone marrow. Further, characterization of stem cells in the bone marrow indicated a hyperproliferative stem cell population. Importantly, the mice did not develop malignant leukemia by the age of 18 months and no mutations were found in the blood transcription factor GATA1, which is commonly affected in human AMKL. While Ts65Dn mice do not develop the AMKL seen in humans with DS, our results indicate that, trisomy 16 can cause hyperproliferation of the myeloid lineages, extramedullary hematopoiesis, and bone marrow fibrosis in mice. Additionally, these results suggest that trisomy 21 in humans may initiate a similar process in hematopoietic stem cells, which may contribute to leukemogenesis. Unexpectedly, this phenotype also bears significant resemblance to the human myeloproliferative disease chronic idiopathic myelofibrosis (CIMF). These findings may provide insight into the origins and progression of human myeloid diseases, including AMKL and CIMF.


Sign in / Sign up

Export Citation Format

Share Document