scholarly journals Independent attenuation correction of whole body [18F]FDG-PET using a deep learning approach with Generative Adversarial Networks

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Karim Armanious ◽  
Tobias Hepp ◽  
Thomas Küstner ◽  
Helmut Dittmann ◽  
Konstantin Nikolaou ◽  
...  
2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Fang Liu ◽  
Hyungseok Jang ◽  
Richard Kijowski ◽  
Gengyan Zhao ◽  
Tyler Bradshaw ◽  
...  

2021 ◽  
Author(s):  
Van Bettauer ◽  
Anna CBP Costa ◽  
Raha Parvizi Omran ◽  
Samira Massahi ◽  
Eftyhios Kirbizakis ◽  
...  

We present deep learning-based approaches for exploring the complex array of morphologies exhibited by the opportunistic human pathogen C. albicans. Our system entitled Candescence automatically detects C. albicans cells from Differential Image Contrast microscopy, and labels each detected cell with one of nine vegetative, mating-competent or filamentous morphologies. The software is based upon a fully convolutional one-stage object detector and exploits a novel cumulative curriculum-based learning strategy that stratifies our images by difficulty from simple vegetative forms to more complex filamentous architectures. Candescence achieves very good performance on this difficult learning set which has substantial intermixing between the predicted classes. To capture the essence of each C. albicans morphology, we develop models using generative adversarial networks and identify subcomponents of the latent space which control technical variables, developmental trajectories or morphological switches. We envision Candescence as a community meeting point for quantitative explorations of C. albicans morphology.


PLoS ONE ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. e0229951 ◽  
Author(s):  
Atsushi Teramoto ◽  
Tetsuya Tsukamoto ◽  
Ayumi Yamada ◽  
Yuka Kiriyama ◽  
Kazuyoshi Imaizumi ◽  
...  

2020 ◽  
pp. jnumed.120.248856
Author(s):  
Lalith Kumar Shiyam Sundar ◽  
David Iommi ◽  
Otto Muzik ◽  
Zacharias Chalampalakis ◽  
Eva-Maria Klebermass ◽  
...  

2021 ◽  
Vol 11 (16) ◽  
pp. 7174
Author(s):  
Amal A. Al-Shargabi ◽  
Jowharah F. Alshobaili ◽  
Abdulatif Alabdulatif ◽  
Naseem Alrobah

COVID-19, a novel coronavirus infectious disease, has spread around the world, resulting in a large number of deaths. Due to a lack of physicians, emergency facilities, and equipment, medical systems have been unable to treat all patients in many countries. Deep learning is a promising approach for providing solutions to COVID-19 based on patients’ medical images. As COVID-19 is a new disease, its related dataset is still being collected and published. Small COVID-19 datasets may not be sufficient to build powerful deep learning detection models. Such models are often over-fitted, and their prediction results cannot be generalized. To fill this gap, we propose a deep learning approach for accurately detecting COVID-19 cases based on chest X-ray (CXR) images. For the proposed approach, named COVID-CGAN, we first generated a larger dataset using generative adversarial networks (GANs). Specifically, a customized conditional GAN (CGAN) was designed to generate the target COVID-19 CXR images. The expanded dataset, which contains 84.8% generated images and 15.2% original images, was then used for training five deep detection models: InceptionResNetV2, Xception, SqueezeNet, VGG16, and AlexNet. The results show that the use of the synthetic CXR images, which were generated by the customized CGAN, helped all deep learning models to achieve high detection accuracies. In particular, the highest accuracy was achieved by the InceptionResNetV2 model, which was 99.72% accurate with only ten epochs. All five models achieved kappa coefficients between 0.81 and 1, which is interpreted as an almost perfect agreement between the actual labels and the detected labels. Furthermore, the experiment showed that some models were faster yet smaller compared to the others but could still achieve high accuracy. For instance, SqueezeNet, which is a small network, required only three minutes and achieved comparable accuracy to larger networks such as InceptionResNetV2, which needed about 143 min. Our proposed approach can be applied to other fields with scarce datasets.


2005 ◽  
Vol 44 (01) ◽  
pp. 8-14 ◽  
Author(s):  
B. Dietl ◽  
J. Marienhagen

Summary Aims: An explorative analysis of the diagnostic as well as therapeutic impact of 18F-FDG whole body PET on patients with various tumours in the setting of an university hospital radiation therapy was performed. Patients and methods: 222 FDG PET investigations (148 initial stagings, 74 restagings) in 176 patients with diverse tumour entities (37 lung carcinoma, 15 gastrointestinal tumours, 38 head and neck cancer, 30 lymphoma, 37 breast cancer, 19 sarcoma and 16 other carcinomas) were done. All PET scans were evaluated in an interdisciplinary approach and consecutively confirmed by other imaging modalities or biopsy. Unconfirmed PET findings were ignored. Proportions of verified PET findings, additional diagnostic information (diagnostic impact) and changes of the therapeutic concept intended and documented before PET with special emphasis on radiooncological decisions (therapeutic impact) were analysed. Results: 195/222 (88%) FDG-PET findings were verified, 104/222 (47%) FDG-PET scans yielded additional diagnostic information (38 distant, 30 additional metastasis, 11 local recurrencies, 10 primary tumours and 15 residual tumours after chemoptherapy). The results of 75/222 (34%) scans induced changes in cancer therapy and those of 58/222 (26%) scans induced modifications of radiotherapeutic treatment plan (esp. target volumes). Conclusion: 18F-FDG whole body PET is a valuable diagnostic tool for therapy planning in radiooncology with a high impact on therapeutic decisions in initial staging as well as in restaging. Especially in a curative setting it should be used for definition of target volumes.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 287
Author(s):  
Maria Isabella Donegani ◽  
Alberto Miceli ◽  
Matteo Pardini ◽  
Matteo Bauckneht ◽  
Silvia Chiola ◽  
...  

We aimed to evaluate the brain hypometabolic signature of persistent isolated olfactory dysfunction after SARS-CoV-2 infection. Twenty-two patients underwent whole-body [18F]-FDG PET, including a dedicated brain acquisition at our institution between May and December 2020 following their recovery after SARS-Cov2 infection. Fourteen of these patients presented isolated persistent hyposmia (smell diskettes olfaction test was used). A voxel-wise analysis (using Statistical Parametric Mapping software version 8 (SPM8)) was performed to identify brain regions of relative hypometabolism in patients with hyposmia with respect to controls. Structural connectivity of these regions was assessed (BCB toolkit). Relative hypometabolism was demonstrated in bilateral parahippocampal and fusiform gyri and in left insula in patients with respect to controls. Structural connectivity maps highlighted the involvement of bilateral longitudinal fasciculi. This study provides evidence of cortical hypometabolism in patients with isolated persistent hyposmia after SARS-Cov2 infection. [18F]-FDG PET may play a role in the identification of long-term brain functional sequelae of COVID-19.


Sign in / Sign up

Export Citation Format

Share Document