scholarly journals Deep learning-based optimal placement of a mobile HAP for common throughput maximization in wireless powered communication networks

Author(s):  
Hong-Sik Kim ◽  
Inwhee Joe

AbstractHybrid access point (HAP) is a node in wireless powered communication networks (WPCN) that can distribute energy to each wireless device and also can receive information from these devices. Recently, mobile HAPs have emerged for efficient network use, and the throughput of the network depends on their location. There are two kinds of metrics for throughput, that is, sum throughput and common throughput; each is the sum and minimum value of throughput between a HAP and each wireless device, respectively. Likewise, two types of throughput maximization problems can be considered, sum throughput maximization and common throughput maximization. In this paper, we focus on the latter to propose a deep learning-based methodology for common throughput maximization by optimally placing a mobile HAP for WPCN. Our study implies that deep learning can be applied to optimize a complex function of common throughput maximization, which is a convex function or a combination of a few convex functions. The experimental results show that our approach provides better performance than mathematical methods for smaller maps.

Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2989 ◽  
Author(s):  
Yinfeng Li ◽  
Dingcheng Yang ◽  
Yu Xu ◽  
Lin Xiao ◽  
Haole Chen

This paper investigates mobile relaying in wireless powered communication networks (WPCN), where an unmanned aerial vehicle (UAV) is employed to help information delivery from multiple sources to destination with communication channels severely blocked. The sources are low-power without energy supply. To support information transmission, the UAV acts as a hybrid access point (AP) to provide wireless power transfer (WPT) and information reception for sources. We set the issue of system throughput maximization as the optimization problem. On the one hand, the system is subject to the information causality constraint due to the dependent processes of information reception and transmission for the UAV. On the other hand, the sources are constrained by a so-called neutrality constraints due to the dependent processes of energy harvesting and energy consumption. In addition, we take account of the access delay issue of all ground nodes. Specifically, two paradigms of delay-tolerant case and delay-sensitive case are presented. However, the formulated problem including optimizations for time slot scheduling, power allocation and UAV trajectory is non-convex and thus is difficult to obtain its optimal solution. To tackle this problem, we apply the successive convex approximation (SCA) technique and propose an iterative algorithm by which a suboptimal solution can be achieved. Simulation results validate our proposed design, and show that the obtained suboptimal solution is high-quality, as compared to benchmark scheme.


Author(s):  
Kechen Zheng ◽  
Xiaoying Liu ◽  
Biao Wang ◽  
Haifeng Zheng ◽  
Kaikai Chi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document