scholarly journals Positive solutions of impulsive time-scale boundary value problems with p-Laplacian on the half-line

Filomat ◽  
2019 ◽  
Vol 33 (2) ◽  
pp. 415-433
Author(s):  
Karaca Yaslan ◽  
Aycan Sinanoglu

In this paper, four functionals fixed point theorem is used to investigate the existence of positive solutions for second-order time-scale boundary value problem of impulsive dynamic equations on the half-line.

Filomat ◽  
2014 ◽  
Vol 28 (10) ◽  
pp. 2163-2173
Author(s):  
Ismail Yaslan ◽  
Zehra Haznedar

In this paper, we consider nonlinear second order m-point impulsive time scale boundary value problems on infinite intervals. By using Leray-Schauder fixed point theorem, Avery-Henderson fixed point theorem and the five functional fixed point theorem, respectively, we establish the criteria for the existence of at least one, two and three positive solutions to the nonlinear impulsive time scale boundary value problems on infinite intervals.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Hongjie Liu ◽  
Xiao Fu ◽  
Liangping Qi

We are concerned with the following nonlinear three-point fractional boundary value problem:D0+αut+λatft,ut=0,0<t<1,u0=0, andu1=βuη, where1<α≤2,0<β<1,0<η<1,D0+αis the standard Riemann-Liouville fractional derivative,at>0is continuous for0≤t≤1, andf≥0is continuous on0,1×0,∞. By using Krasnoesel'skii's fixed-point theorem and the corresponding Green function, we obtain some results for the existence of positive solutions. At the end of this paper, we give an example to illustrate our main results.


2007 ◽  
Vol 14 (4) ◽  
pp. 775-792
Author(s):  
Youyu Wang ◽  
Weigao Ge

Abstract In this paper, we consider the existence of multiple positive solutions for the 2𝑛th order 𝑚-point boundary value problem: where (0,1), 0 < ξ 1 < ξ 2 < ⋯ < ξ 𝑚–2 < 1. Using the Leggett–Williams fixed point theorem, we provide sufficient conditions for the existence of at least three positive solutions to the above boundary value problem. The associated Green's function for the above problem is also given.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Imed Bachar ◽  
Said Mesloub

We consider singular nonlinear Hadamard fractional boundary value problems. Using properties of Green’s function and a fixed point theorem, we show that the problem has positive solutions which blow up. Finally, some examples are provided to explain the applications of the results.


Author(s):  
D. D. Hai ◽  
Seth F. Oppenheimer

SynopsisWe consider the existence of positive solutions to a class of singular nonlinear boundary value problems for P-Laplacian-like equations. Our approach is based on the Schauder Fixed-Point Theorem.


2016 ◽  
Vol 25 (2) ◽  
pp. 215-222
Author(s):  
K. R. PRASAD ◽  
◽  
N. SREEDHAR ◽  
L. T. WESEN ◽  
◽  
...  

In this paper, we develop criteria for the existence of multiple positive solutions for second order Sturm-Liouville boundary value problem, u 00 + k 2u + f(t, u) = 0, 0 ≤ t ≤ 1, au(0) − bu0 (0) = 0 and cu(1) + du0 (1) = 0, where k ∈ 0, π 2 is a constant, by an application of Avery–Henderson fixed point theorem.


2003 ◽  
Vol 46 (2) ◽  
pp. 279-292 ◽  
Author(s):  
Ruyun Ma

AbstractIn this paper we consider the existence of positive solutions to the boundary-value problems\begin{align*} (p(t)u')'-q(t)u+\lambda f(t,u)\amp=0,\quad r\ltt\ltR, \\[2pt] au(r)-bp(r)u'(r)\amp=\sum^{m-2}_{i=1}\alpha_iu(\xi_i), \\ cu(R)+dp(R)u'(R)\amp=\sum^{m-2}_{i=1}\beta_iu(\xi_i), \end{align*}where $\lambda$ is a positive parameter, $a,b,c,d\in[0,\infty)$, $\xi_i\in(r,R)$, $\alpha_i,\beta_i\in[0,\infty)$ (for $i\in\{1,\dots m-2\}$) are given constants satisfying some suitable conditions. Our results extend some of the existing literature on superlinear semipositone problems. The proofs are based on the fixed-point theorem in cones.AMS 2000 Mathematics subject classification: Primary 34B10, 34B18, 34B15


Author(s):  
Heinrich Voss

SynopsisUsing a fixed point theorem on operators expanding a cone in a Banach space we prove the existence of positive solutions of superlinear boundary value problemsAt the same time we get bounds (or even inclusions) of positive solutions.


2016 ◽  
Vol 09 (04) ◽  
pp. 1650089 ◽  
Author(s):  
K. R. Prasad ◽  
L. T. Wesen ◽  
N. Sreedhar

In this paper, we consider the second-order differential equations of the form [Formula: see text] satisfying the Sturm–Liouville boundary conditions [Formula: see text] where [Formula: see text]. By an application of Avery–Henderson fixed point theorem, we establish conditions for the existence of multiple positive solutions to the boundary value problem.


Sign in / Sign up

Export Citation Format

Share Document