scholarly journals On some new midpoint inequalities for the functions of two variables via quantum calculus

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Xuexiao You ◽  
Muhammad Aamir Ali ◽  
Samet Erden ◽  
Hüseyin Budak ◽  
Yu-Ming Chu

AbstractIn this paper, first we obtain a new identity for quantum integrals, the result is then used to prove midpoint type inequalities for differentiable coordinated convex mappings. The outcomes provided in this article are an extension of the comparable consequences in the literature on the midpoint inequalities for differentiable coordinated convex mappings.

Symmetry ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 768 ◽  
Author(s):  
Humaira Kalsoom ◽  
Jun-De Wu ◽  
Sabir Hussain ◽  
Muhammad Amer Latif

In the present paper, we aim to prove a new lemma and quantum Simpson’s type inequalities for functions of two variables having convexity on co-ordinates over [ α , β ] × [ ψ , ϕ ] . Moreover, our deduction introduce new direction as well as validate the previous results.


Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3155-3169 ◽  
Author(s):  
Seth Kermausuor ◽  
Eze Nwaeze

Recently, a new Ostrowski type inequality on time scales for k points was proved in [G. Xu, Z. B. Fang: A Generalization of Ostrowski type inequality on time scales with k points. Journal of Mathematical Inequalities (2017), 11(1):41-48]. In this article, we extend this result to the 2-dimensional case. Besides extension, our results also generalize the three main results of Meng and Feng in the paper [Generalized Ostrowski type inequalities for multiple points on time scales involving functions of two independent variables. Journal of Inequalities and Applications (2012), 2012:74]. In addition, we apply some of our theorems to the continuous, discrete, and quantum calculus to obtain more interesting results in this direction. We hope that results obtained in this paper would find their place in approximation and numerical analysis.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Hui Lei ◽  
Gou Hu ◽  
Zhi-Jie Cao ◽  
Ting-Song Du

Abstract The main aim of this paper is to establish some Fejér-type inequalities involving hypergeometric functions in terms of GA-s-convexity. For this purpose, we construct a Hadamard k-fractional identity related to geometrically symmetric mappings. Moreover, we give the upper and lower bounds for the weighted inequalities via products of two different mappings. Some applications of the presented results to special means are also provided.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1216
Author(s):  
Jessada Tariboon ◽  
Muhammad Aamir Ali ◽  
Hüseyin Budak ◽  
Sotiris K. Ntouyas

In this paper, the notions of post-quantum integrals for two-variable interval-valued functions are presented. The newly described integrals are then used to prove some new Hermite–Hadamard inclusions for co-ordinated convex interval-valued functions. Many of the findings in this paper are important extensions of previous findings in the literature. Finally, we present a few examples of our new findings. Analytic inequalities of this nature and especially the techniques involved have applications in various areas in which symmetry plays a prominent role.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1102
Author(s):  
Yashoverdhan Vyas ◽  
Hari M. Srivastava ◽  
Shivani Pathak ◽  
Kalpana Fatawat

This paper provides three classes of q-summation formulas in the form of general contiguous extensions of the first q-Kummer summation theorem. Their derivations are presented by using three methods, which are along the lines of the three types of well-known proofs of the q-Kummer summation theorem with a key role of the q-binomial theorem. In addition to the q-binomial theorem, the first proof makes use of Thomae’s q-integral representation and the second proof needs Heine’s transformation. Whereas the third proof utilizes only the q-binomial theorem. Subsequently, the applications of these summation formulas in obtaining the general contiguous extensions of the second and the third q-Kummer summation theorems are also presented. Furthermore, the investigated results are specialized to give many of the known as well as presumably new q-summation theorems, which are contiguous to the three q-Kummer summation theorems. This work is motivated by the observation that the basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) gamma and q-hypergeometric functions and basic (or q-) hypergeometric polynomials, are applicable particularly in several diverse areas including Number Theory, Theory of Partitions and Combinatorial Analysis as well as in the study of Combinatorial Generating Functions. Just as it is known in the theory of the Gauss, Kummer (or confluent), Clausen and the generalized hypergeometric functions, the parameters in the corresponding basic or quantum (or q-) hypergeometric functions are symmetric in the sense that they remain invariant when the order of the p numerator parameters or when the order of the q denominator parameters is arbitrarily changed. A case has therefore been made for the symmetry possessed not only by hypergeometric functions and basic or quantum (or q-) hypergeometric functions, which are studied in this paper, but also by the symmetric quantum calculus itself.


2004 ◽  
Vol 11 (4) ◽  
pp. 753-758
Author(s):  
A. Kharazishvili

Abstract For a given σ-ideal of sets, the notion of a generalized stepfunction is introduced and investigated in connection with the problem of sup-measurability of certain functions of two variables, regarded as superposition operators.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1753
Author(s):  
Saima Rashid ◽  
Aasma Khalid ◽  
Omar Bazighifan ◽  
Georgia Irina Oros

Integral inequalities for ℘-convex functions are established by using a generalised fractional integral operator based on Raina’s function. Hermite–Hadamard type inequality is presented for ℘-convex functions via generalised fractional integral operator. A novel parameterized auxiliary identity involving generalised fractional integral is proposed for differentiable mappings. By using auxiliary identity, we derive several Ostrowski type inequalities for functions whose absolute values are ℘-convex mappings. It is presented that the obtained outcomes exhibit classical convex and harmonically convex functions which have been verified using Riemann–Liouville fractional integral. Several generalisations and special cases are carried out to verify the robustness and efficiency of the suggested scheme in matrices and Fox–Wright generalised hypergeometric functions.


Sign in / Sign up

Export Citation Format

Share Document