scholarly journals Semi-classical solutions of perturbed elliptic system with general superlinear nonlinearity

2014 ◽  
Vol 2014 (1) ◽  
Author(s):  
Fangfang Liao ◽  
Xianhua Tang ◽  
Jian Zhang ◽  
Dongdong Qin
2020 ◽  
Vol 26 ◽  
pp. 121
Author(s):  
Dongbing Zha ◽  
Weimin Peng

For the Cauchy problem of nonlinear elastic wave equations for 3D isotropic, homogeneous and hyperelastic materials with null conditions, global existence of classical solutions with small initial data was proved in R. Agemi (Invent. Math. 142 (2000) 225–250) and T. C. Sideris (Ann. Math. 151 (2000) 849–874) independently. In this paper, we will give some remarks and an alternative proof for it. First, we give the explicit variational structure of nonlinear elastic waves. Thus we can identify whether materials satisfy the null condition by checking the stored energy function directly. Furthermore, by some careful analyses on the nonlinear structure, we show that the Helmholtz projection, which is usually considered to be ill-suited for nonlinear analysis, can be in fact used to show the global existence result. We also improve the amount of Sobolev regularity of initial data, which seems optimal in the framework of classical solutions.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mengmeng Liu ◽  
Xueyun Lin

AbstractIn this paper, we show the global existence of classical solutions to the incompressible elastodynamics equations with a damping mechanism on the stress tensor in dimension three for sufficiently small initial data on periodic boxes, that is, with periodic boundary conditions. The approach is based on a time-weighted energy estimate, under the assumptions that the initial deformation tensor is a small perturbation around an equilibrium state and the initial data have some symmetry.


2005 ◽  
Vol 12 (2) ◽  
pp. 237-254
Author(s):  
Zdzisław Kamont ◽  
Adam Nadolski

Abstract We prove that a function of several variables satisfying a functional differential inequality with unbounded delay can be estimated by a solution of a suitable initial problem for an ordinary functional differential equation. As a consequence of the comparison theorem we obtain a Perron-type uniqueness result and a result on continuous dependence of solutions on given functions for partial functional differential equations with unbounded delay. We consider classical solutions on the Haar pyramid.


2020 ◽  
Vol 20 (1) ◽  
pp. 77-93 ◽  
Author(s):  
Zhijun Zhang

AbstractThis paper is concerned with the existence, uniqueness and asymptotic behavior of classical solutions to two classes of models {-\triangle u\pm\lambda\frac{|\nabla u|^{2}}{u^{\beta}}=b(x)u^{-\alpha}}, {u>0}, {x\in\Omega}, {u|_{\partial\Omega}=0}, where Ω is a bounded domain with smooth boundary in {\mathbb{R}^{N}}, {\lambda>0}, {\beta>0}, {\alpha>-1}, and {b\in C^{\nu}_{\mathrm{loc}}(\Omega)} for some {\nu\in(0,1)}, and b is positive in Ω but may be vanishing or singular on {\partial\Omega}. Our approach is largely based on nonlinear transformations and the construction of suitable sub- and super-solutions.


Sign in / Sign up

Export Citation Format

Share Document