scholarly journals How far does logistic dampening influence the global solvability of a high-dimensional chemotaxis system?

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ke Jiang ◽  
Yongjie Han

AbstractThis paper deals with the homogeneous Neumann boundary value problem for chemotaxis system $$\begin{aligned} \textstyle\begin{cases} u_{t} = \Delta u - \nabla \cdot (u\nabla v)+\kappa u-\mu u^{\alpha }, & x\in \Omega, t>0, \\ v_{t} = \Delta v - uv, & x\in \Omega, t>0, \end{cases}\displaystyle \end{aligned}$$ { u t = Δ u − ∇ ⋅ ( u ∇ v ) + κ u − μ u α , x ∈ Ω , t > 0 , v t = Δ v − u v , x ∈ Ω , t > 0 , in a smooth bounded domain $\Omega \subset \mathbb{R}^{N}(N\geq 2)$ Ω ⊂ R N ( N ≥ 2 ) , where $\alpha >1$ α > 1 and $\kappa \in \mathbb{R},\mu >0$ κ ∈ R , μ > 0 for suitably regular positive initial data.When $\alpha \ge 2$ α ≥ 2 , it has been proved in the existing literature that, for any $\mu >0$ μ > 0 , there exists a weak solution to this system. We shall concentrate on the weaker degradation case: $\alpha <2$ α < 2 . It will be shown that when $N<6$ N < 6 , any sublinear degradation is enough to guarantee the global existence of weak solutions. In the case of $N\geq 6$ N ≥ 6 , global solvability can be proved whenever $\alpha >\frac{4}{3}$ α > 4 3 . It is interesting to see that once the space dimension $N\ge 6$ N ≥ 6 , the qualified value of α no longer changes with the increase of N.

2012 ◽  
Vol 23 (01) ◽  
pp. 1-36 ◽  
Author(s):  
YOUSHAN TAO ◽  
ZHI-AN WANG

We consider the attraction–repulsion chemotaxis system [Formula: see text] under homogeneous Neumann boundary conditions in a bounded domain Ω ⊂ ℝn with smooth boundary, where χ ≥ 0, ξ ≥ 0, α > 0, β > 0, γ > 0, δ > 0 and τ = 0, 1. We study the global solvability, boundedness, blow-up, existence of non-trivial stationary solutions and asymptotic behavior of the system for various ranges of parameter values. Particularly, we prove that the system with τ = 0 is globally well-posed in high dimensions if repulsion prevails over attraction in the sense that ξγ - χα > 0, and that the system with τ = 1 is globally well-posed in two dimensions if repulsion dominates over attraction in the sense that ξγ - χα > 0 and β = δ. Hence our results confirm that the attraction–repulsion is a plausible mechanism to regularize the classical Keller–Segel model whose solution may blow up in higher dimensions.


Author(s):  
Frederic Heihoff

AbstractWe consider the parabolic–elliptic Keller–Segel system $$\begin{aligned} \left\{ \begin{aligned} u_t&= \Delta u - \chi \nabla \cdot (u \nabla v), \\ 0&= \Delta v - v + u \end{aligned} \right. \end{aligned}$$ u t = Δ u - χ ∇ · ( u ∇ v ) , 0 = Δ v - v + u in a smooth bounded domain $$\Omega \subseteq {\mathbb {R}}^n$$ Ω ⊆ R n , $$n\in {\mathbb {N}}$$ n ∈ N , with Neumann boundary conditions. We look at both chemotactic attraction ($$\chi > 0$$ χ > 0 ) and repulsion ($$\chi < 0$$ χ < 0 ) scenarios in two and three dimensions. The key feature of interest for the purposes of this paper is under which conditions said system still admits global classical solutions due to the smoothing properties of the Laplacian even if the initial data is very irregular. Regarding this, we show for initial data $$\mu \in {\mathcal {M}}_+({\overline{\Omega }})$$ μ ∈ M + ( Ω ¯ ) that, if either $$n = 2$$ n = 2 , $$\chi < 0$$ χ < 0 or $$n = 2$$ n = 2 , $$\chi > 0$$ χ > 0 and the initial mass is small or $$n = 3$$ n = 3 , $$\chi < 0$$ χ < 0 and $$\mu = f \in L^p(\Omega )$$ μ = f ∈ L p ( Ω ) , $$p > 1$$ p > 1 holds, it is still possible to construct global classical solutions to ($$\star $$ ⋆ ), which are continuous in $$t = 0$$ t = 0 in the vague topology on $${\mathcal {M}}_+({\overline{\Omega }})$$ M + ( Ω ¯ ) .


Author(s):  
Wenbin Lv ◽  
Qingyuan Wang

Abstract This paper deals with the global existence for a class of Keller–Segel model with signal-dependent motility and general logistic term under homogeneous Neumann boundary conditions in a higher-dimensional smoothly bounded domain, which can be written as $$\eqalign{& u_t = \Delta (\gamma (v)u) + \rho u-\mu u^l,\quad x\in \Omega ,\;t > 0, \cr & v_t = \Delta v-v + u,\quad x\in \Omega ,\;t > 0.} $$ It is shown that whenever ρ ∈ ℝ, μ > 0 and $$l > \max \left\{ {\displaystyle{{n + 2} \over 2},2} \right\},$$ then the considered system possesses a global classical solution for all sufficiently smooth initial data. Furthermore, the solution converges to the equilibrium $$\left( {{\left( {\displaystyle{{\rho _ + } \over \mu }} \right)}^{1/(l-1)},{\left( {\displaystyle{{\rho _ + } \over \mu }} \right)}^{1/(l-1)}} \right)$$ as t → ∞ under some extra hypotheses, where ρ+ = max{ρ, 0}.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Heping Ma

In this study, we deal with the chemotaxis system with singular sensitivity by two stimuli under homogeneous Neumann boundary conditions in a bounded domain with smooth boundary. Under appropriate regularity assumptions on the initial data, we show that the system possesses global classical solution. Our results generalize and improve previously known ones.


The Galerkin approximation to the Navier–Stokes equations in dimension N , where N is an infinite non-standard natural number, is shown to have standard part that is a weak solution. This construction is uniform with respect to non-standard representation of the initial data, and provides easy existence proofs for statistical solutions.


2012 ◽  
Vol 86 (2) ◽  
pp. 244-253 ◽  
Author(s):  
YANG-WEN ZHANG ◽  
HONG-XU LI

AbstractIn this paper, we consider the Neumann boundary value problem with a parameter λ∈(0,∞): By using fixed point theorems in a cone, we obtain some existence, multiplicity and nonexistence results for positive solutions in terms of different values of λ. We also prove an existence and uniqueness theorem and show the continuous dependence of solutions on the parameter λ.


2010 ◽  
Vol 20 (05) ◽  
pp. 731-756 ◽  
Author(s):  
VERÓNICA ANAYA ◽  
MOSTAFA BENDAHMANE ◽  
MAURICIO SEPÚLVEDA

We consider a reaction–diffusion system of 2 × 2 equations modeling the spread of early tumor cells. The existence of weak solutions is ensured by a classical argument of Faedo–Galerkin method. Then, we present a numerical scheme for this model based on a finite volume method. We establish the existence of discrete solutions to this scheme, and we show that it converges to a weak solution. Finally, some numerical simulations are reported with pattern formation examples.


Sign in / Sign up

Export Citation Format

Share Document