scholarly journals Existence results for a class of generalized fractional boundary value problems

2017 ◽  
Vol 2017 (1) ◽  
Author(s):  
Wen Cao ◽  
Y Xu ◽  
Zhoushun Zheng
2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Yongfang Wei ◽  
Zhanbing Bai

This paper is devoted to the research of some Caputo’s fractional derivative boundary value problems with a convection term. By the use of some fixed-point theorems and the properties of Green function, the existence results of at least one or triple positive solutions are presented. Finally, two examples are given to illustrate the main results.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yaning Li ◽  
Quanguo Zhang ◽  
Baoyan Sun

In this paper, we deal with two fractional boundary value problems which have linear growth and quadratic growth about the fractional derivative in the nonlinearity term. By using variational methods coupled with the iterative methods, we obtain the existence results of solutions. To the best of the authors’ knowledge, there are no results on the solutions to the fractional boundary problem which have quadratic growth about the fractional derivative in the nonlinearity term.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Zhanbing Bai ◽  
Yu Cheng ◽  
Sujing Sun

AbstractExistence results for the three-point fractional boundary value problem $$\begin{aligned}& D^{\alpha}x(t)= f \bigl(t, x(t), D^{\alpha-1} x(t) \bigr),\quad 0< t< 1, \\& x(0)=A, \qquad x(\eta)-x(1)=(\eta-1)B, \end{aligned}$$ Dαx(t)=f(t,x(t),Dα−1x(t)),0<t<1,x(0)=A,x(η)−x(1)=(η−1)B, are presented, where $A, B\in\mathbb{R}$A,B∈R, $0<\eta<1$0<η<1, $1<\alpha\leq2$1<α≤2. $D^{\alpha}x(t)$Dαx(t) is the conformable fractional derivative, and $f: [0, 1]\times\mathbb{R}^{2}\to\mathbb{R}$f:[0,1]×R2→R is continuous. The analysis is based on the nonlinear alternative of Leray–Schauder.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Zhiyu Li ◽  
Zhanbing Bai

AbstractIn this paper, we are dedicated to researching the boundary value problems (BVPs) for equation $D^{\alpha }x(t)=f(t,x(t),D^{\alpha -1}x(t))$Dαx(t)=f(t,x(t),Dα−1x(t)), with the boundary value conditions to be either: $x(0)=A$x(0)=A, $D^{\alpha -1}x(1)=B$Dα−1x(1)=B or $D^{\alpha -1}x(0)=A$Dα−1x(0)=A, $x(1)=B$x(1)=B. Let the nonlinear term f satisfy some sign conditions, then by making use of the Leray–Schauder nonlinear alternative, some existence results are obtained. In the end, an example is given to verify the main results.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Ahmed Alsaedi ◽  
Bashir Ahmad ◽  
Afrah Assolami

We study an antiperiodic boundary value problem of nonlinear fractional differential equations of orderq∈(4,5]. Some existence results are obtained by applying some standard tools of fixed-point theory. We show that solutions for lower-order anti-periodic fractional boundary value problems follow from the solution of the problem at hand. Our results are new and generalize the existing results on anti-periodic fractional boundary value problems. The paper concludes with some illustrating examples.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yousef Gholami

AbstractThe main aim of this paper is to present some existence criteria for an infinite system of Hilfer fractional boundary value problems of the form $$ \mathcal{D}_{a^{+}}^{\alpha,\beta }u_{i}=-F_{i}(t,u),\quad u_{i}(a)=u_{i}(b)=0, a< t< b,i=1,2,\ldots, $$ D a + α , β u i = − F i ( t , u ) , u i ( a ) = u i ( b ) = 0 , a < t < b , i = 1 , 2 , … , in Banach sequence spaces of $c_{0}$ c 0 and $l_{p},p\geq 1$ l p , p ≥ 1 types. Our approach is based on the Darbo-type fixed point theorems acting on the condensing operators. The obtained existence results in each of the above sequence spaces are illustrated by presenting some numerical examples.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Imran Talib ◽  
Thabet Abdeljawad

Abstract Our main concern in this article is to investigate the existence of solution for the boundary-value problem $$\begin{aligned}& (\phi \bigl(x'(t)\bigr)'=g_{1} \bigl(t,x(t),x'(t)\bigr),\quad \forall t\in [0,1], \\& \Upsilon _{1}\bigl(x(0),x(1),x'(0)\bigr)=0, \\& \Upsilon _{2}\bigl(x(0),x(1),x'(1)\bigr)=0, \end{aligned}$$ ( ϕ ( x ′ ( t ) ) ′ = g 1 ( t , x ( t ) , x ′ ( t ) ) , ∀ t ∈ [ 0 , 1 ] , ϒ 1 ( x ( 0 ) , x ( 1 ) , x ′ ( 0 ) ) = 0 , ϒ 2 ( x ( 0 ) , x ( 1 ) , x ′ ( 1 ) ) = 0 , where $g_{1}:[0,1]\times \mathbb{R}^{2}\rightarrow \mathbb{R}$ g 1 : [ 0 , 1 ] × R 2 → R is an $L^{1}$ L 1 -Carathéodory function, $\Upsilon _{i}:\mathbb{R}^{3}\rightarrow \mathbb{R} $ ϒ i : R 3 → R are continuous functions, $i=1,2$ i = 1 , 2 , and $\phi :(-a,a)\rightarrow \mathbb{R}$ ϕ : ( − a , a ) → R is an increasing homeomorphism such that $\phi (0)=0$ ϕ ( 0 ) = 0 , for $0< a< \infty $ 0 < a < ∞ . We obtain the solvability results by imposing some new conditions on the boundary functions. The new conditions allow us to ensure the existence of at least one solution in the sector defined by well ordered functions. These ordered functions do not require one to check the definitions of lower and upper solutions. Moreover, the monotonicity assumptions on the arguments of boundary functions are not required in our case. An application is considered to ensure the applicability of our results.


Sign in / Sign up

Export Citation Format

Share Document