scholarly journals A fast numerical method for fractional partial differential equations

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
S. Mockary ◽  
E. Babolian ◽  
A. R. Vahidi

Abstract In this paper, we use operational matrices of Chebyshev polynomials to solve fractional partial differential equations (FPDEs). We approximate the second partial derivative of the solution of linear FPDEs by operational matrices of shifted Chebyshev polynomials. We apply the operational matrix of integration and fractional integration to obtain approximations of (fractional) partial derivatives of the solution and the approximation of the solution. Then we substitute the operational matrix approximations in the FPDEs to obtain a system of linear algebraic equations. Finally, solving this system, we obtain the approximate solution. Numerical experiments show an exponential rate of convergence and hence the efficiency and effectiveness of the method.

2018 ◽  
Vol 22 (Suppl. 1) ◽  
pp. 277-286 ◽  
Author(s):  
Hossein Jafari ◽  
Haleh Tajadodi

In this work we suggest a numerical approach based on the B-spline polynomial to obtain the solution of linear fractional partial differential equations. We find the operational matrix for fractional integration and then we convert the main problem into a system of linear algebraic equations by using this matrix. Examples are provided to show the simplicity of our method.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Fukang Yin ◽  
Junqiang Song ◽  
Yongwen Wu ◽  
Lilun Zhang

A numerical method is presented to obtain the approximate solutions of the fractional partial differential equations (FPDEs). The basic idea of this method is to achieve the approximate solutions in a generalized expansion form of two-dimensional fractional-order Legendre functions (2D-FLFs). The operational matrices of integration and derivative for 2D-FLFs are first derived. Then, by these matrices, a system of algebraic equations is obtained from FPDEs. Hence, by solving this system, the unknown 2D-FLFs coefficients can be computed. Three examples are discussed to demonstrate the validity and applicability of the proposed method.


2018 ◽  
Vol 35 (6) ◽  
pp. 2349-2366 ◽  
Author(s):  
Umer Saeed ◽  
Mujeeb ur Rehman ◽  
Qamar Din

Purpose The purpose of this paper is to propose a method for solving nonlinear fractional partial differential equations on the semi-infinite domain and to get better and more accurate results. Design/methodology/approach The authors proposed a method by using the Chebyshev wavelets in conjunction with differential quadrature technique. The operational matrices for the method are derived, constructed and used for the solution of nonlinear fractional partial differential equations. Findings The operational matrices contain many zero entries, which lead to the high efficiency of the method and reasonable accuracy is achieved even with less number of grid points. The results are in good agreement with exact solutions and more accurate as compared to Haar wavelet method. Originality/value Many engineers can use the presented method for solving their nonlinear fractional models.


Author(s):  
Chandrali Baishya ◽  
P. Veeresha

The Atangana–Baleanu derivative and the Laguerre polynomial are used in this analysis to define a new computational technique for solving fractional differential equations. To serve this purpose, we have derived the operational matrices of fractional integration and fractional integro-differentiation via Laguerre polynomials. Using the derived operational matrices and collocation points, we reduce the fractional differential equations to a system of linear or nonlinear algebraic equations. For the error of the operational matrix of the fractional integration, an error bound is derived. To illustrate the accuracy and the reliability of the projected algorithm, numerical simulation is presented, and the nature of attained results is captured in diverse order. Finally, the achieved consequences enlighten that the solutions obtained by the proposed scheme give better convergence to the actual solution than the results available in the literature.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 463-472 ◽  
Author(s):  
Abdulnasir Isah ◽  
Chang Phang

AbstractIn this work, we propose a new operational method based on a Genocchi wavelet-like basis to obtain the numerical solutions of non-linear fractional order differential equations (NFDEs). To the best of our knowledge this is the first time a Genocchi wavelet-like basis is presented. The Genocchi wavelet-like operational matrix of a fractional derivative is derived through waveletpolynomial transformation. These operational matrices are used together with the collocation method to turn the NFDEs into a system of non-linear algebraic equations. Error estimates are shown and some illustrative examples are given in order to demonstrate the accuracy and simplicity of the proposed technique.


2021 ◽  
Vol 5 (4) ◽  
pp. 208
Author(s):  
Muhammad I. Bhatti ◽  
Md. Habibur Rahman

A multidimensional, modified, fractional-order B-polys technique was implemented for finding solutions of linear fractional-order partial differential equations. To calculate the results of the linear Fractional Partial Differential Equations (FPDE), the sum of the product of fractional B-polys and the coefficients was employed. Moreover, minimization of error in the coefficients was found by employing the Galerkin method. Before the Galerkin method was applied, the linear FPDE was transformed into an operational matrix equation that was inverted to provide the values of the unknown coefficients in the approximate solution. A valid multidimensional solution was determined when an appropriate number of basis sets and fractional-order of B-polys were chosen. In addition, initial conditions were applied to the operational matrix to seek proper solutions in multidimensions. The technique was applied to four examples of linear FPDEs and the agreements between exact and approximate solutions were found to be excellent. The current technique can be expanded to find multidimensional fractional partial differential equations in other areas, such as physics and engineering fields.


Sign in / Sign up

Export Citation Format

Share Document