scholarly journals Time-delay effect on a diffusive predator–prey model with habitat complexity

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yanfeng Li ◽  
Haicheng Liu ◽  
Ruizhi Yang

AbstractBased on the predator–prey system with a Holling type functional response function, a diffusive predator–prey system with digest delay and habitat complexity is proposed. Firstly, the stability of the equilibrium of diffusion system without delay is studied. Secondly, under the Neumann boundary conditions, taking time delay as the bifurcation parameter, by analyzing the eigenvalues of linearized operator of the system and using the normal form theory and center manifold method of partial functional differential equations, the effect of time delay on the stability of the system is studied and the conditions under which Hopf bifurcation occurs are given. In addition, the calculation formulas of the bifurcation direction and the stability of bifurcating periodic solutions are derived. Finally, the accuracy of theoretical analysis results is verified by numerical simulations and the biological explanation is given for the analysis results.

2012 ◽  
Vol 17 (4) ◽  
pp. 379-409 ◽  
Author(s):  
Xiaoyuan Chang ◽  
Junjie Wei

In this paper, we investigated the dynamics of a diffusive delayed predator-prey system with Holling type II functional response and nozero constant prey harvesting on no-flux boundary condition. At first, we obtain the existence and the stability of the equilibria by analyzing the distribution of the roots of associated characteristic equation. Using the time delay as the bifurcation parameter and the harvesting term as the control parameter, we get the existence and the stability of Hopf bifurcation at the positive constant steady state. Applying the normal form theory and the center manifold argument for partial functional differential equations, we derive an explicit formula for determining the direction and the stability of Hopf bifurcation. Finally, an optimal control problem has been considered.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ruizhi Yang ◽  
Yuxin Ma ◽  
Chiyu Zhang

AbstractIn this paper, we consider a diffusive predator–prey model with a time delay and prey toxicity. The effect of time delay on the stability of the positive equilibrium is studied by analyzing the eigenvalue spectrum. Delay-induced Hopf bifurcation is also investigated. By utilizing the normal form method and center manifold reduction for partial functional differential equations, the formulas for determining the property of Hopf bifurcation are given.


2009 ◽  
Vol 19 (07) ◽  
pp. 2283-2294 ◽  
Author(s):  
CUN-HUA ZHANG ◽  
XIANG-PING YAN

This paper is concerned with a delayed Lotka–Volterra two-species predator–prey system with a distributed delay. By linearizing the system at the positive equilibrium and analyzing the associated characteristic equation, the asymptotic stability of positive equilibrium is investigated and Hopf bifurcations are demonstrated. It is found that the positive equilibrium of the system is always locally asymptotically stable when the delay kernel is the weak kernel while there is a stability switch of positive equilibrium when the delay kernel is the strong kernel and the system can undergo a Hopf bifurcation at the positive equilibrium when the average time delay in the delay kernel crosses certain critical values. In particular, by applying the normal form theory and center manifold reduction to functional differential equations (FDEs), the explicit formula determining the direction of Hopf bifurcations and the stability of bifurcated periodic solutions is given. Finally, some numerical simulations are also included to support the analytical results obtained.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Heping Jiang ◽  
Huiping Fang ◽  
Yongfeng Wu

Abstract This paper mainly aims to consider the dynamical behaviors of a diffusive delayed predator–prey system with Smith growth and herd behavior subject to the homogeneous Neumann boundary condition. For the analysis of the predator–prey model, we have studied the existence of Hopf bifurcation by analyzing the distribution of the roots of associated characteristic equation. Then we have proved the stability of the periodic solution by calculating the normal form on the center of manifold which is associated to the Hopf bifurcation points. Some numerical simulations are also carried out in order to validate our analysis findings. The implications of our analytical and numerical findings are discussed critically.


2012 ◽  
Vol 2012 ◽  
pp. 1-21
Author(s):  
Jia-Fang Zhang

This paper is concerned with a delayed predator-prey diffusion model with Neumann boundary conditions. We study the asymptotic stability of the positive constant steady state and the conditions for the existence of Hopf bifurcation. In particular, we show that large diffusivity has no effect on the Hopf bifurcation, while small diffusivity can lead to the fact that spatially nonhomogeneous periodic solutions bifurcate from the positive constant steady-state solution when the system parameters are all spatially homogeneous. Meanwhile, we study the properties of the spatially nonhomogeneous periodic solutions applying normal form theory of partial functional differential equations (PFDEs).


2009 ◽  
Vol 02 (02) ◽  
pp. 139-149 ◽  
Author(s):  
LINGSHU WANG ◽  
RUI XU ◽  
GUANGHUI FENG

A predator–prey model with time delay and Holling type-II functional response is investigated. By choosing time delay as the bifurcation parameter and analyzing the associated characteristic equation of the linearized system, the local stability of the system is investigated and Hopf bifurcations are established. The formulae determining the direction of bifurcations and the stability of bifurcating periodic solutions are given by using the normal form theory and center manifold theorem. Numerical simulations are carried out to illustrate the theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Qingsong Liu ◽  
Yiping Lin ◽  
Jingnan Cao

A modified Leslie-Gower predator-prey system with two delays is investigated. By choosingτ1andτ2as bifurcation parameters, we show that the Hopf bifurcations occur when time delay crosses some critical values. Moreover, we derive the equation describing the flow on the center manifold; then we give the formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions. Numerical simulations are carried out to illustrate the theoretical results and chaotic behaviors are observed. Finally, using a global Hopf bifurcation theorem for functional differential equations, we show the global existence of the periodic solutions.


2008 ◽  
Vol 01 (03) ◽  
pp. 313-326 ◽  
Author(s):  
XINYU SONG ◽  
HONGJIAN GUO

In this paper, we consider a predator-prey system with stage structure. The populations have two stages, an immature stage and a mature stage, the age to maturity is represented by a time delay, which leads to systems of retarded functional differential equations. We obtain the conditions for global asymptotic stability of two nonnegative equilibria of this system. The numerical simulation suggests that time delay has both oscillatory dynamics and stabilizing effects.


2021 ◽  
Author(s):  
Ruizhi Yang ◽  
Chenxuan Nie ◽  
Dan Jin

Abstract In this paper, we study a delayed diffusive predator-prey model with nonlocal competition in prey and habitat complexity. The local stability of coexisting equilibrium are studied by analyzing the eigenvalue spectrum. Time delay inducing Hopf bifurcation is investigated by using time delay as bifurcation parameter. We give some conditions for determining the bifurcation direction and the stability of the bifurcating periodic solution by utilizing the normal form method and center manifold theorem. Our results suggest that only nonlocal competition and diffusion together can induce stably spatial inhomogeneous bifurcating periodic solutions.


2017 ◽  
Vol 10 (06) ◽  
pp. 1750079 ◽  
Author(s):  
M. Sivakumar ◽  
K. Balachandran ◽  
K. Karuppiah

In this paper, we consider a diffusive density-dependent predator–prey model with Crowley–Martin functional responses subject to Neumann boundary condition. We analyze the stability of the positive equilibrium and the existence of spatially homogeneous and inhomogeneous periodic solutions through the distribution of the eigenvalues. The direction and stability of Hopf bifurcation are determined by the normal form theory and the center manifold theory. Finally, numerical simulations are given to verify our theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document