scholarly journals Multilevel governance energy planning and policy: a view on local energy initiatives

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Viktorija Dobravec ◽  
Nikola Matak ◽  
Christian Sakulin ◽  
Goran Krajačić

Abstract Background A sustainable energy system based on renewables, energy-efficiency, decentralisation of energy generation and synergies between different sectors requires new energy planning methods and policies. Energy transition and climate change mitigation achievement can no longer be seen only through top-down activities from a national government. Local and regional governments have a crucial role in delivering public policies relevant to such endeavour. Therefore, the implementation of multilevel governance (MLG) has become a priority for fostering local and regional development more inclusively. Paper analyses the existing energy planning governance in Austria throughout the MLG structure by focusing on the alignment between the local energy and climate initiatives and the national and EU goals. Also, the paper examined the effectiveness of the current MLG structures and outlined the fields where improvements are needed. The successfulness of the MLG approach is shown on Judenburg city case study. Desk research is enhanced by a series of interviews with energy policy experts and implementation of case study measures in TIMES model. Results The MLG analysis showed the solid alignment of different governance levels. In contrast, the comparison of the energy and climate initiatives on the local level outlined recommendations for the design of more effective energy planning approach. Four areas of action are identified for further improvement: territorial fragmentation, data availability, spatial energy planning and new integrated MLG. The remaining non-conventional biomass potential of the Murtal region is enough to increase the share of district heating for the residential buildings of the Judenburg city from 16.3 to 30.8% while the building refurbishment increases district heating share to 32%. Conclusion Application of MLG analysis demonstrated the alignment of energy targets in Austrian policy on different governance levels. The general willingness of Austrian municipalities to take part in local energy actions was shown through the local initiatives’ analysis. It is argued that strengthening the listed areas of work is necessary to raise the effectiveness of the local initiatives. The case study for the city of Judenburg developed in the TIMES model confirmed that coordinated actions from different levels of governance lead to effective implementation of measures.

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 461
Author(s):  
Isabel Azevedo ◽  
Vítor Leal

This paper proposes the use of decomposition analysis to assess the effect of local energy-related actions towards climate change mitigation, and thus improve policy evaluation and planning at the local level. The assessment of the impact of local actions has been a challenge, even from a strictly technical perspective. This happens because the total change observed is the result of multiple factors influencing local energy-related greenhouse gas (GHG) emissions, many of them not even influenced by local authorities. A methodology was developed, based on a recently developed decomposition model, that disaggregates the total observed changes in the local energy system into multiple causes/effects (including local socio-economic evolution, technology evolution, higher-level governance frame and local actions). The proposed methodology, including the quantification of the specific effect associated with local actions, is demonstrated with the case study of the municipality of Malmö (Sweden) in the timeframe between 1990 and 2015.


2022 ◽  
Vol 42 ◽  
pp. 99-111
Author(s):  
Jussi Valta ◽  
Saku J. Mäkinen ◽  
Johanna Kirjavainen
Keyword(s):  

2018 ◽  
Vol 12 (3) ◽  
pp. 411-425 ◽  
Author(s):  
Yi Dou ◽  
Keijiro Okuoka ◽  
Minoru Fujii ◽  
Hiroki Tanikawa ◽  
Tsuyoshi Fujita ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2955 ◽  
Author(s):  
Binod Prasad Koirala ◽  
Ellen van Oost ◽  
Henny van der Windt

With energy transition gaining momentum, energy storage technologies are increasingly spotlighted as they can effectively handle mismatches in supply and demand. The decreasing cost of distributed energy generation technologies and energy storage technologies as well as increasing demand for local flexibility is opening up new possibilities for the deployment of energy storage technologies in local energy communities. In this context, community energy storage has potential to better integrate energy supply and demand at the local level and can contribute towards accommodating the needs and expectations of citizens and local communities as well as future ecological needs. However, there are techno-economical and socio-institutional challenges of integrating energy storage technologies in the largely centralized present energy system, which demand socio-technical innovation. To gain insight into these challenges, this article studies the technical, demand and political articulations of new innovative local energy storage technologies based on an embedded case study approach. The innovation dynamics of two local energy storage innovations, the seasalt battery of DrTen® and the seasonal thermal storage Ecovat®, are analysed. We adopt a co-shaping perspective for understanding innovation dynamics as a result of the socio-institutional dynamics of alignment of various actors, their articulations and the evolving network interactions. Community energy storage necessitates thus not only technical innovation but, simultaneously, social innovation for its successful adoption. We will assess these dynamics also from the responsible innovation framework that articulates various forms of social, environmental and public values. The socio-technical alignment of various actors, human as well as material, is central in building new socio-technical configurations in which the new storage technology, the community and embedded values are being developed.


Author(s):  
Klaus Illum

Dr Ilium, with degrees in Civil Engineering from the Technical University of Denmark and in Energy Systems and Energy Planning from Aalborg University, has had his own consulting company, ECOConsult, since 2000. He was from 1962 for over a decade mainly occupied with the development of educational programs in computerscience alongside with studies in systems theory and cybernetics at the Danish Academy of Engineering in Copenhagen and Aalborg.Thereafter, as senior Associate Professor (Docent) at the Department of Development and Planning, Aalborg University, he was mainly engaged in the development of methods and computer models for the technological, environmental and economic analysis of alternative scenarios for the development of energy systems and agricultural production systems. He has also been engaged in studies of environmental policies and problems in Central and Eastern European countries, in particular in energy planning in Czechoslovakia/the Czech Republic, and was Programme Manager for the Nordic Training Programme for Energy Experts in the Baltic States, the PROCEED programme. In addition, Dr Ilium has developed comprehensive computer models for: numerical analysis of thermodynamic systems (power plants, cogeneration plants, integrated industrial processes,etc.); energy planning on the national, regional and local energy system level; technological/socio-economic energy systems analysis; economic assessment of alternative energy system projects; flow analysis (nutrients and energy) and economic analysis of agricultural systems. He has developed the Sustainable Energy Systems Analysis Model (SESAM), an advanced, general computer model for the analysis of scenarios for the future development of national, regional or local energy systems which has been used and is presently being used for the integrated technological, environmental, and economic analysis of present and future energy systems infrastructures in Denmark, the Czech Republic, Poland, and Germany. 


2021 ◽  
Author(s):  
Syed Muhammad Shees Saeed

Ontario’s energy system provides reliable and clean energy to the province. The demand of electricity is rising throughout the world, thus Ontario’s goal is to maintain the demand and generation of electricity. In this report we have discussed the electricity demand of Ontario and divided the sectors into categorical data of electricity and studied peak hour demands of Toronto. First, we have briefly discussed the introduction, which includes the history, geographical location and socio-economic importance of Toronto. Then in the literature review we have highlighted Ontario’s generation of electricity, which is produced by various renewable energy sources and have further discussed their drawbacks. The survey is focused on the demand of electricity in Toronto by calculating the requirement and then distributing the data into 24 hours, from which we have studied peak hours demand in various categories such as residential buildings, offices, shops etc. The purpose of this survey is to monitor the electricity demand in order to reduce power outages and blackouts due to technical issues.


2021 ◽  
Vol 13 (21) ◽  
pp. 11641
Author(s):  
Olatz Azurza-Zubizarreta ◽  
Izaro Basurko-PerezdeArenaza ◽  
Eñaut Zelarain ◽  
Estitxu Villamor ◽  
Ortzi Akizu-Gardoki ◽  
...  

Achieving the ambitious targets set by Europe in its 2050 roadmap, moving away from fossil fuels towards renewable energy sources, while reducing carbon emissions, will require a radical change in Europe’s energy system. Much of the action that will enable this energy transition to be realised in a democratic way is at the local level. It is at this level that many of the decisions regarding the energy transition desired by European citizens will have to be taken. The methodology used in this study is based on data collection, literature review, data validation and analysis. A part of this analysis will also be taken by the mPower project as a diagnostic baseline. The first finding of this research work is that energy transition data availability at the local level is quite low. Second, the local authorities are experiencing difficulties in decarbonising their energy consumption. Finally, the factor with highest positive relationships with other energy transition variables is the number of people employed in the field of energy transition. The results suggest that in order to lead a participatory energy transition, the workforce specifically dedicated to energy transition is a key factor, clearly differentiating it from staff working on the general energy field.


2019 ◽  
Vol 111 ◽  
pp. 06021
Author(s):  
Laura Carnieletto ◽  
Samantha Graci ◽  
Michele De Carli

The present paper shows the background analysis to develop the optimization strategy of a neighborhood heating network sited in Padua, including it in a wider project of district renovation. The case study accounts several different end users: scholastic and offices buildings, a social housing residence and residential buildings. The analysis starts from a systematic assessment of the buildings, evaluating the need of refurbishment of the envelope and of the distribution system. Further analysis focuses on the optimization of the existing heat generation system, integrating three condensing boilers, with an air to water heat pump and a ground source heat pump, which work more efficiently during base-load periods. The management of the district heating network have been investigated using the dynamic simulation tool TRNSYS, the control strategy of the delivery temperature has been tested based on the outside temperature and verifying to satisfy comfort conditions inside the buildings. A sustainable solution is the recovery and drainage of rainwater, that can be reused for the toilets’ flushing. Therefore, the project solution identified aims at a more rational use of energy sources, which is the simplest and cheapest way to proceed on the decarbonization path that is a mid-term target for the Padua administration.


Sign in / Sign up

Export Citation Format

Share Document