scholarly journals Heat transfer analysis of underground U-type heat exchanger of ground source heat pump system

SpringerPlus ◽  
2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Guihong Pei ◽  
Liyin Zhang
2012 ◽  
Vol 204-208 ◽  
pp. 4349-4355
Author(s):  
Man Fu Yan ◽  
Jiu Hai Wang

To solve the problem of enhancing the heat transfer capability of antifreeze mixture in a ground source heat pump system, the existing Transductive Support Vector Machine (TSVM) model was updated into an improved TSVM model. Also, a new method of mixed antifreeze heat transfer capability classification was given in the paper by analyzing antifreeze [1] heat transfer capability of the ground source heat pump system and applying the improved TSVM model.


2014 ◽  
Vol 548-549 ◽  
pp. 595-600
Author(s):  
Can Can Zhang ◽  
Yue Jin Yu

In order to analyze the influence of groundwater flow on ground heat exchangers with different arrangements, with a project in Nanjing the access temperature field in the multi-borehole field was simulated after the ground source heat pump system had been performed for a year. Simulation results show that the access temperature is higher in the ground surrounding the borehole than the center of the corresponding borehole, thus forming a thermal barrier surrounding the borehole. Groundwater flow helps relieve temperature imbalance owing to the imbalance of heating and cooling load. The performance of the ground heat exchangers is better in staggered arrangement than in aligned arrangement. In the borehole field, the boreholes upstream have thermal interference on those downstream. And the extent of thermal interference depends on the direction of the groundwater flow when the locations of the boreholes are fixed in the borehole field.


2014 ◽  
Vol 889-890 ◽  
pp. 1347-1352
Author(s):  
Hong Wen Jin ◽  
Qing Shen Fang

The rock soil thermal conductivity is the most important design parameter for the ground source heat pump system. Based on the equation applied for the heat transfer between the geothermal heat exchanger and its surrounding rock soil, a quasi-three dimensional heat conduction model showing the heat transfer inside the borehole of the U-tube was established to determine the thermal conductivity of the deep-layer rock soil. The results obtained show that the average thermal conductivity got through calculation and actual determination in a tube-embedding region of the ground source heat pump engineering were 1.895 and 1.955W/(m·°C), respectively. The soil layer, which has a great thermal conductivity and a strong integrated heat transfer capability, is suitable for the use of the ground source heat pump system with the tubes embedded underground. The soil layer, with a body temperature of 19 °C and a higher initial temperature, is suitable for the heat extraction from underground in winter. The deviation between the calculation and the determination of the average thermal conductivity in the abovementioned region was 0.06, which could meet the required precision, indicating that the results from the calculation could be used for design.


Sign in / Sign up

Export Citation Format

Share Document