scholarly journals Retraction Note: Unique RNA signature of different lesion types in the brain white matter in progressive multiple sclerosis

Author(s):  
Maria L. Elkjaer ◽  
Tobias Frisch ◽  
Richard Reynolds ◽  
Tim Kacprowski ◽  
Mark Burton ◽  
...  
Author(s):  
Maria L. Elkjaer ◽  
Tobias Frisch ◽  
Richard Reynolds ◽  
Tim Kacprowski ◽  
Mark Burton ◽  
...  

AbstractTo identify pathogenetic markers and potential drivers of different lesion types in the white matter (WM) of patients with progressive multiple sclerosis (PMS), we sequenced RNA from 73 different WM areas. Compared to 25 WM controls, 6713 out of 18,609 genes were significantly differentially expressed in MS tissues (FDR < 0.05). A computational systems medicine analysis was performed to describe the MS lesion endophenotypes. The cellular source of specific molecules was examined by RNAscope, immunohistochemistry, and immunofluorescence. To examine common lesion specific mechanisms, we performed de novo network enrichment based on shared differentially expressed genes (DEGs), and found TGFβ-R2 as a central hub. RNAscope revealed astrocytes as the cellular source of TGFβ-R2 in remyelinating lesions. Since lesion-specific unique DEGs were more common than shared signatures, we examined lesion-specific pathways and de novo networks enriched with unique DEGs. Such network analysis indicated classic inflammatory responses in active lesions; catabolic and heat shock protein responses in inactive lesions; neuronal/axonal specific processes in chronic active lesions. In remyelinating lesions, de novo analyses identified axonal transport responses and adaptive immune markers, which was also supported by the most heterogeneous immunoglobulin gene expression. The signature of the normal-appearing white matter (NAWM) was more similar to control WM than to lesions: only 465 DEGs differentiated NAWM from controls, and 16 were unique. The upregulated marker CD26/DPP4 was expressed by microglia in the NAWM but by mononuclear cells in active lesions, which may indicate a special subset of microglia before the lesion develops, but also emphasizes that omics related to MS lesions should be interpreted in the context of different lesions types. While chronic active lesions were the most distinct from control WM based on the highest number of unique DEGs (n = 2213), remyelinating lesions had the highest gene expression levels, and the most different molecular map from chronic active lesions. This may suggest that these two lesion types represent two ends of the spectrum of lesion evolution in PMS. The profound changes in chronic active lesions, the predominance of synaptic/neural/axonal signatures coupled with minor inflammation may indicate end-stage irreversible molecular events responsible for this less treatable phase.


2005 ◽  
Vol 81 (5) ◽  
pp. 687-695 ◽  
Author(s):  
Oscar A. Bizzozero ◽  
Gisela DeJesus ◽  
Kelly Callahan ◽  
Andrzej Pastuszyn

2019 ◽  
Author(s):  
Tobias Frisch ◽  
Maria L. Elkjaer ◽  
Richard Reynolds ◽  
Tanja Maria Michel ◽  
Tim Kacprowski ◽  
...  

AbstractMultiple sclerosis (MS) is a chronic inflammatory neurodegenerative disorder of the central nervous system with an untreatable late progressive phase in a high percentage of patients. Molecular maps of different stages of brain lesion evolution in patients with progressive MS (PMS) are missing but critical for understanding disease development and to identify novel targets to halt progression. We introduce the first MS brain lesion atlas (msatlas.dk), developed to address the current challenges of understanding mechanisms driving the fate of PMS on lesion basis. The MS Atlas gives means for testing research hypotheses, validating candidate biomarkers and drug targets. The MS Atlas data base comprises comprehensive high-quality transcriptomic profiles of 73 brain white matter lesions at different stages of lesion evolution from 10 PMS patients and 25 control white matter samples from five patients with non-neurological disease. The MS Atlas was assembled from next generation RNA sequencing of post mortem samples using strict, conservative preprocessing as well as advanced statistical data analysis. It comes with a user-friendly web interface, which allows for querying and interactively analyzing the PMS lesion evolution. It fosters bioinformatics methods for de novo network enrichment to extract mechanistic markers for specific lesion types and pathway-based lesion type comparison. We describe examples of how the MS Atlas can be used to extract systems medicine signatures. We also demonstrate how its interface can interactively condense and visualize the atlas’ content. This compendium of mechanistic PMS white matter lesion profiles is an invaluable resource to fuel future multiple sclerosis research and a new basis for treatment development.


2005 ◽  
Vol 30 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Oscar A. Bizzozero ◽  
Gisela DeJesus ◽  
Heather A. Bixler ◽  
Andrzej Pastuszyn

SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A322-A323
Author(s):  
Rahul Dasgupta ◽  
Sonja Schütz ◽  
Tiffany Braley

Abstract Introduction Sleep-disordered breathing is common in persons with multiple sclerosis (PwMS), and may contribute to debilitating fatigue and other chronic MS symptoms. The majority of research to date on SDB in MS has focused on the prevalence and consequences of obstructive sleep apnea; however, PwMS may also be at increased risk for central sleep apnea (CSA), and the utility of methods to assess CSA in PwMS warrant further exploration. We present a patient with secondary progressive multiple sclerosis who was found to have severe central sleep apnea on WatchPAT testing. Report of case(s) A 61 year-old female with a past medical history of secondary progressive multiple sclerosis presented with complaints of fragmented sleep. MRI of the brain, cervical spine, and thoracic spine showed numerous demyelinating lesions in the brain, brainstem, cervical, and thoracic spinal cord. Upon presentation, the patient noted snoring, witnessed apneas, and daytime sleepiness. WatchPAT demonstrated severe sleep apnea, with a pAHI of 63.3, and a minimum oxygen saturation of 90%. The majority of the scored events were non-obstructive in nature (73.1% of all scored events), and occurred intermittently in a periodic fashion. Conclusion The differential diagnosis of fatigue in PwMS should include sleep-disordered breathing, including both obstructive and central forms of sleep apnea. Demyelinating lesions in the brainstem (which may contribute to impairment of motor and sensory networks that control airway patency and respiratory drive), and progressive forms of MS, have been linked to both OSA and CSA. The present data illustrate this relationship in a person with progressive MS, and offer support for the WatchPAT as a cost-effective means to evaluate for both OSA and CSA in PwMS, while reducing patient burden. PwMS may be at increased risk for CSA. Careful clinical consideration should be given to ordering appropriate sleep testing to differentiate central from obstructive sleep apnea in PwMS, particularly for patients with demyelinating lesions in the brainstem. Support (if any) 1. Braley TJ, Segal BM, Chervin RD. Obstructive sleep apnea and fatigue in patients with multiple sclerosis. J Clin Sleep Med. 2014 Feb 15;10(2):155–62. doi: 10.5664/jcsm.3442. PMID: 24532998; PMCID: PMC3899317.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256155
Author(s):  
Intakhar Ahmad ◽  
Stig Wergeland ◽  
Eystein Oveland ◽  
Lars Bø

Incomplete remyelination is frequent in multiple sclerosis (MS)-lesions, but there is no established marker for recent remyelination. We investigated the role of the oligodendrocyte/myelin protein ermin in de- and remyelination in the cuprizone (CPZ) mouse model, and in MS. The density of ermin+ oligodendrocytes in the brain was significantly decreased after one week of CPZ exposure (p < 0.02). The relative proportion of ermin+ cells compared to cells positive for the late-stage oligodendrocyte marker Nogo-A increased at the onset of remyelination in the corpus callosum (p < 0.02). The density of ermin-positive cells increased in the corpus callosum during the CPZ-phase of extensive remyelination (p < 0.0001). In MS, the density of ermin+ cells was higher in remyelinated lesion areas compared to non-remyelinated areas both in white- (p < 0.0001) and grey matter (p < 0.0001) and compared to normal-appearing white matter (p < 0.001). Ermin immunopositive cells in MS-lesions were not immunopositive for the early-stage oligodendrocyte markers O4 and O1, but a subpopulation was immunopositive for Nogo-A. The data suggest a relatively higher proportion of ermin immunopositivity in oligodendrocytes compared to Nogo-A indicates recent or ongoing remyelination.


Sign in / Sign up

Export Citation Format

Share Document