scholarly journals Alzheimer’s disease tau is a prominent pathology in LRRK2 Parkinson’s disease

Author(s):  
Michael X. Henderson ◽  
Medha Sengupta ◽  
John Q. Trojanowski ◽  
Virginia M. Y. Lee

AbstractMutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson’s disease (PD). While the clinical presentation of LRRK2 mutation carriers is similar to that of idiopathic PD (iPD) patients, the neuropathology of LRRK2 PD is less clearly defined. Lewy bodies (LBs) composed of α-synuclein are a major feature of iPD, but are not present in all LRRK2 PD cases. There is some evidence that tau may act as a neuropathological substrate in LB-negative LRRK2 PD, but this has not been examined systematically. In the current study, we examined α-synuclein, tau, and amyloid β (Aβ) pathologies in 12 LRRK2 mutation carriers. We find that α-synuclein pathology is present in 63.6% of LRRK2 mutation carriers, but tau pathology can be found in 100% of carriers and is abundant in 91% of carriers. We further use an antibody which selectively binds Alzheimer’s disease (AD)-type tau and use quantitative analysis of tau pathology to demonstrate that AD tau is the prominent type of tau present in LRRK2 mutation carriers. Abundant Aβ pathology can also be found in LRRK2 mutation carriers and is consistent with comorbid AD pathology. Finally, we assessed the association of neuropathology with clinical features in LRRK2 mutation carriers and idiopathic individuals and find that LRRK2 PD shares clinical and pathological features of idiopathic PD. The prevalence of AD-type tau pathology in LRRK2 PD is an important consideration for understanding PD pathogenesis and refining clinical trial inclusion and progression criterion.

Brain ◽  
2006 ◽  
Vol 129 (5) ◽  
pp. 1177-1187 ◽  
Author(s):  
Mirko Bibl ◽  
Brit Mollenhauer ◽  
Hermann Esselmann ◽  
Piotr Lewczuk ◽  
Hans-Wolfgang Klafki ◽  
...  

2021 ◽  
pp. 155005942199714
Author(s):  
Lucia Zinno ◽  
Anna Negrotti ◽  
Chiara Falzoi ◽  
Giovanni Messa ◽  
Matteo Goldoni ◽  
...  

Introduction. An easily accessible and inexpensive neurophysiological technique such as conventional electroencephalography may provide an accurate and generally applicable biomarker capable of differentiating dementia with Lewy bodies (DLB) from Alzheimer’s disease (AD) and Parkinson’s disease-associated dementia (PDD). Method. We carried out a retrospective visual analysis of resting-state electroencephalography (EEG) recording of 22 patients with a clinical diagnosis of 19 probable and 3 possible DLB, 22 patients with probable AD and 21 with PDD, matched for age, duration, and severity of cognitive impairment. Results. By using the grand total EEG scoring method, the total score and generalized rhythmic delta activity frontally predominant (GRDAfp) alone or, even better, coupled with a slowing of frequency of background activity (FBA) and its reduced reactivity differentiated DLB from AD at an individual level with an high accuracy similar to that obtained with quantitative EEG (qEEG). GRDAfp alone could also differentiate DLB from PDD with a similar level of diagnostic accuracy. AD differed from PDD only for a slowing of FBA. The duration and severity of cognitive impairment did not differ between DLB patients with and without GRDAfp, indicating that this abnormal EEG pattern should not be regarded as a disease progression marker. Conclusions. The findings of this investigation revalorize the role of conventional EEG in the diagnostic workup of degenerative dementias suggesting the potential inclusion of GRDAfp alone or better coupled with the slowing of FBA and its reduced reactivity, in the list of supportive diagnostic biomarkers of DLB.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Barbara E. Spencer ◽  
Robin G. Jennings ◽  
Chun C. Fan ◽  
James B. Brewer

Abstract In the clinical diagnosis of dementia with Lewy bodies, distinction from Alzheimer’s disease is suboptimal and complicated by shared genetic risk factors and frequent co-pathology. In the present study we tested the ability of polygenic scores for Alzheimer’s disease, dementia with Lewy bodies, and Parkinson’s disease to differentiate individuals in a 2713-participant, pathologically defined sample. A dementia with Lewy bodies polygenic score that excluded apolipoprotein E due to its overlap with Alzheimer’s disease risk was specifically associated with at least limbic (transitional) Lewy-related pathology and a pathological diagnosis of dementia with Lewy bodies. An Alzheimer’s disease polygenic score was associated with neuritic plaques and neurofibrillary tangles but not Lewy-related pathology, and was most strongly associated with an Alzheimer’s pathological diagnosis. Our results indicate that an assessment of genetic risk may be useful to clinically distinguish between Alzheimer’s disease and dementia with Lewy bodies. Notably, we found no association with a Parkinson’s disease polygenic score, which aligns with evidence that dementia with Lewy bodies has a distinct genetic signature that can be exploited to improve clinical diagnoses.


Sign in / Sign up

Export Citation Format

Share Document