polygenic score
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 131)

H-INDEX

12
(FIVE YEARS 7)

2022 ◽  
Vol 27 ◽  
pp. 100223
Author(s):  
Rachael K. Blackman ◽  
Dwight Dickinson ◽  
Daniel P. Eisenberg ◽  
Michael D. Gregory ◽  
José A. Apud ◽  
...  

Author(s):  
Oliver Pain ◽  
Alexandra C. Gillett ◽  
Jehannine C. Austin ◽  
Lasse Folkersen ◽  
Cathryn M. Lewis

AbstractThere is growing interest in the clinical application of polygenic scores as their predictive utility increases for a range of health-related phenotypes. However, providing polygenic score predictions on the absolute scale is an important step for their safe interpretation. We have developed a method to convert polygenic scores to the absolute scale for binary and normally distributed phenotypes. This method uses summary statistics, requiring only the area-under-the-ROC curve (AUC) or variance explained (R2) by the polygenic score, and the prevalence of binary phenotypes, or mean and standard deviation of normally distributed phenotypes. Polygenic scores are converted using normal distribution theory. We also evaluate methods for estimating polygenic score AUC/R2 from genome-wide association study (GWAS) summary statistics alone. We validate the absolute risk conversion and AUC/R2 estimation using data for eight binary and three continuous phenotypes in the UK Biobank sample. When the AUC/R2 of the polygenic score is known, the observed and estimated absolute values were highly concordant. Estimates of AUC/R2 from the lassosum pseudovalidation method were most similar to the observed AUC/R2 values, though estimated values deviated substantially from the observed for autoimmune disorders. This study enables accurate interpretation of polygenic scores using only summary statistics, providing a useful tool for educational and clinical purposes. Furthermore, we have created interactive webtools implementing the conversion to the absolute (https://opain.github.io/GenoPred/PRS_to_Abs_tool.html). Several further barriers must be addressed before clinical implementation of polygenic scores, such as ensuring target individuals are well represented by the GWAS sample.


2021 ◽  
pp. 1-11
Author(s):  
Gabriel L. Schlomer ◽  
Qi Sun

Abstract Recent developments in the application life history theory to human development indicate two fundamental dimension of the early environment – harshness and unpredictability – are key regulators life history strategies. Few studies have examined the manner with which these dimensions influence development, though age at menarche (AAM) and age at first sexual intercourse have been proposed as possible mechanisms among women. Data from the Avon Longitudinal Study of Parents and Children (N = 3,645) were used to examine direct and indirect effects of harshness (financial difficulties) and unpredictability (paternal transitions) on lifetime and past year sexual partners during adolescence and young adulthood. Genetic confounding was addressed using an AAM polygenic score (PGS) and potential gene-by-environment interactions were also evaluated using the PGS. Path model results showed only harshness was directly related to AAM. Harshness, unpredictability, and AAM were indirectly related to lifetime and past year sexual partner number via age at first sexual intercourse. The PGS did not account for any of the associations and no significant interactions were detected. Implications of these results for developmental models derived from life history theory are discussed as well as the role of PGSs in gene–environment interplay research.


2021 ◽  
Vol 118 (50) ◽  
pp. e2022715118
Author(s):  
Christopher T. Dawes ◽  
Aysu Okbay ◽  
Sven Oskarsson ◽  
Aldo Rustichini

Twin and adoption studies have shown that individual differences in political participation can be explained, in part, by genetic variation. However, these research designs cannot identify which genes are related to voting or the pathways through which they exert influence, and their conclusions rely on possibly restrictive assumptions. In this study, we use three different US samples and a Swedish sample to test whether genes that have been identified as associated with educational attainment, one of the strongest correlates of political participation, predict self-reported and validated voter turnout. We find that a polygenic score capturing individuals’ genetic propensity to acquire education is significantly related to turnout. The strongest associations we observe are in second-order midterm elections in the United States and European Parliament elections in Sweden, which tend to be viewed as less important by voters, parties, and the media and thus present a more information-poor electoral environment for citizens to navigate. A within-family analysis suggests that individuals’ education-linked genes directly affect their voting behavior, but, for second-order elections, it also reveals evidence of genetic nurture. Finally, a mediation analysis suggests that educational attainment and cognitive ability combine to account for between 41% and 63% of the relationship between the genetic propensity to acquire education and voter turnout.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1805
Author(s):  
Nathalie I. V. Nilsson ◽  
Cynthia Picard ◽  
Anne Labonté ◽  
Theresa Köbe ◽  
Pierre-François Meyer ◽  
...  

Midlife hypercholesterolemia is a well-known risk factor for sporadic Alzheimer’s disease (AD), and like AD, it is highly influenced by genetics with heritability estimates of 32–63%. We thus hypothesized that genetics underlying peripheral blood total cholesterol (TC) levels could influence the risk of developing AD. We created a weighted polygenic score (TC-PGS) using summary data from a meta-analysis of TC genome-wide association studies for evaluation in three independent AD-related cohorts spanning pre-clinical, clinical, and pathophysiologically proved AD. APOE-ε4 variant was purposely included in the analysis as it represents an already well-established genetic risk factor for both AD and circulating TC. We could vastly improve the performance of the score when considering p-value thresholds for inclusion in the score, sex, and statin use. This optimized score (p-value threshold of 1 × 10−6 for inclusion in the score) explained 18.2% of the variance in TC levels in statin free females compared to 6.9% in the entire sample and improved prediction of hypercholesterolemia (receiver operator characteristics analysis revealed area under the curve increase from 70.8% to 80.5%). The TC-PGS was further evaluated for association with AD risk and pathology. We found no association between the TC-PGS and either of the AD hallmark pathologies, assessed by cerebrospinal fluid levels of Aβ-42, p-Tau, and t-Tau, and 18F-NAV4694 and 18F-AV-1451 positron emission tomography. Similarly, we found no association with the risk of developing amyloid pathology or becoming cognitively impaired in individuals with amyloid pathology.


2021 ◽  
Author(s):  
Mahan Nekoui ◽  
James Pirruccello ◽  
Paolo Di Achille ◽  
Seung Hoan Choi ◽  
Samuel Friedman ◽  
...  

Background The left ventricular outflow tract (LVOT) and ascending aorta are spatially complex, with distinct pathologies and embryologic origins. Prior work examined genetics of thoracic aortic diameter in a single plane. We sought to elucidate the genetic basis for the diameter of the LVOT, the aortic root, and the ascending aorta. Methods We used deep learning to analyze 2.3 million cardiac magnetic resonance images from 43,317 UK Biobank participants. We computed the diameters of the LVOT, the aortic root, and at six locations in the ascending aorta. For each diameter, we conducted a genome-wide association study and generated a polygenic score. Finally, we investigated associations between these polygenic scores and disease incidence. Results 79 loci were significantly associated with at least one diameter. Of these, 35 were novel, and a majority were associated with one or two diameters. A polygenic score of aortic diameter approximately 13mm from the sinotubular junction most strongly predicted thoracic aortic aneurysm in UK Biobank participants (n=427,016; HR=1.42 per standard deviation; CI=1.34-1.50, P=6.67x10-21). A polygenic score predicting a smaller aortic root was predictive of aortic stenosis (n=426,502; HR=1.08 per standard deviation; CI=1.03-1.12, P=5x10-6). Conclusions We detected distinct common genetic loci underpinning the diameters of the LVOT, the aortic root, and at several segments in the ascending aorta. We spatially defined a region of aorta whose genetics may be most relevant to predicting thoracic aortic aneurysm. We further described a genetic signature that may predispose to aortic stenosis. Understanding the genetic contributions to the diameter of the proximal aorta may enable identification of individuals at risk for life-threatening aortic disease and facilitate prioritization of therapeutic targets.


Author(s):  
Tycho R. Tromp ◽  
Arjen J. Cupido ◽  
Laurens F. Reeskamp ◽  
Erik S.G. Stroes ◽  
G. Kees Hovingh ◽  
...  

2021 ◽  
pp. jech-2020-216000
Author(s):  
Molly Scannell Bryan ◽  
Temidayo Ogundiran ◽  
Oladosu Ojengbede ◽  
Wei Zheng ◽  
William Blot ◽  
...  

IntroductionMany diseases of adulthood are associated with a woman’s age at menarche. Genetic variation affects age at menarche, but it remains unclear whether in women of African ancestry the timing of menarche is regulated by genetic variants that were identified in predominantly European and East Asian populations.MethodsWe explored the genetic architecture of age at menarche in 3145 women of African ancestry who live in the USA, Barbados and Nigeria. We undertook a genome-wide association study, and evaluated the performance of previously identified variants.ResultsOne variant was associated with age at menarche, a deletion at chromosome 2 (chr2:207216165) (p=1.14×10−8). 349 genotyped variants overlapped with these identified in populations of non-African ancestry; these replicated weakly, with 51.9% having concordant directions of effect. However, collectively, a polygenic score constructed of those previous variants was suggestively associated with age at menarche (beta=0.288 years; p=0.041). Further, this association was strong in women enrolled in the USA and Barbados (beta=0.445 years, p=0.008), but not in Nigerian women (beta=0.052 years; p=0.83).DiscussionThis study suggests that in women of African ancestry the genetic drivers of age at menarche may differ from those identified in populations of non-African ancestry, and that these differences are more pronounced in women living in Nigeria, although some associated trait loci may be shared across populations. This highlights the need for well-powered ancestry-specific genetic studies to fully characterise the genetic influences of age at menarche.


2021 ◽  
Author(s):  
Diana Schendel ◽  
Thomas Munk Laursen ◽  
Clara Albiñana ◽  
Bjarni Vilhjalmsson ◽  
Christine Ladd‐Acosta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document