sporadic parkinson’s disease
Recently Published Documents


TOTAL DOCUMENTS

351
(FIVE YEARS 51)

H-INDEX

51
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Linfang Wang ◽  
Honglei Wang ◽  
Margaret S Ho

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial and sporadic Parkinson's disease (PD). A plethora of evidence has indicated a role for LRRK2 in endolysosomal trafficking in neurons, while LRRK2 function in glia, although highly expressed, remains largely unknown. Here we present evidence that LRRK2/dLRRK mediates a glial lysosomal pathway that contributes to the mechanism of PD. Independent of its kinase activity, glial LRRK2/dLRRK knockdown in the immortalized microglial cells or flies results in enlarged and swelling lysosomes fewer in number. These lysosomes are less mobile, wrongly acidified, and exhibit defective membrane permeability and reduced activity of the lysosome hydrolase cathespin B. In addition, microglial LRRK2 depletion causes increased Caspase 3 levels, leading to glial apoptosis, dopaminergic neurodegeneration, and locomotor deficits in an age-dependent manner. Taken together, these findings demonstrate a functional role of LRRK2/dLRRK in regulating the glial lysosomal pathway; deficits in lysosomal biogenesis and function linking to glial apoptosis potentially underlie the mechanism of DA neurodegeneration, contributing to the progression of PD.


2021 ◽  
Author(s):  
Peng Li ◽  
Zuqiang Fu ◽  
Lei Yan ◽  
Ming-yang Du ◽  
Wei-guoLiu

Abstract Background The aetiology of Parkinson's disease (PD) is indistinct, but previous studies of different ethnicities have shown that genetic variations in synuclein alpha (SNCA) have an essential character in the risk of PD. The relation between SNCA intronic single nucleotide polymorphisms (SNPs) and the risk of PD is unclear. Based on the general population and five ethnic groups, this article managed a meta-analysis about the connection of SNCA intronic SNPs with the PD genetic predisposition. Methods This study was implemented according to the 24-step guideline, with strict criteria. The analysis was performed using Stata 16.0 software. Five genetic models were used to analyze the strength of the association, which was quantified by OR value and 95% CI. Results We included 15433 cases and 34143 controls from 31 articles. 6 SNPs in the intron region were screened, and 5 SNPs were statistically significant. Three variants augmented the PD susceptibility (rs2736990, rs3822086, and rs3857059), and two SNPs decreased the risk (rs356186 and rs7684318). Subgroup analysis showed that rs2736990 and rs3822086 carriers added the PD genetic predisposition in the East Asian group. European and Latin group carrying rs3857059 and rs2736990 is the high-risk populations of PD. Conclusions This study finally found 5 SNCA intronic SNPs related to the risk of PD. And racial factors should not be ignored.


2021 ◽  
Vol 3 ◽  
Author(s):  
Carolina Torres-Rojas ◽  
Wenyuan Zhao ◽  
Daming Zhuang ◽  
James P. O’Callaghan ◽  
Lu Lu ◽  
...  

Paraquat (PQ) is a putative risk factor for the development of sporadic Parkinson’s disease. To model a possible genetic basis for individual differences in susceptibility to exposure to PQ, we recently examined the effects of paraquat on tyrosine hydroxylase (TH)-containing neurons in the substantia nigra pars compacta (SNc) of six members of the BXD family of mice (n = 2–6 per strain). We injected males with 5 mg/kg paraquat weekly three times. The density of TH+ neurons counted by immunocytochemistry at 200x in eight or more sections through the SNc is reduced in five of the six strains relative to control (N = 4 ± 2 mice per strain). TH+ loss ranged from 0 to 20% with an SEM of 1%. The heritability was estimated using standard ANOVA and jackknife resampling and is 0.37 ± 0.05 in untreated animals and 0.47 ± 0.04 in treated animals. These results demonstrate genetic modulation and GxE variation in susceptibility to PQ exposure and the loss of TH staining in the substantia nigra.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yi Lu ◽  
Wenzhi Chen ◽  
Caihui Wei ◽  
Yu Zhu ◽  
Renshi Xu

Sporadic Parkinson’s disease (sPD) and sporadic amyotrophic lateral sclerosis (sALS) are neurodegenerative diseases characterized by progressive and selective neuron death, with some genetic similarities. In order to investigate the genetic risk factors common to both sPD and sALS, we carried out a screen of risk alleles for sALS and related loci in 530 sPD patients and 530 controls from the Han population of Mainland China (HPMC). We selected 27 single-nucleotide polymorphisms in 10 candidate genes associated with sALS, and we performed allelotyping and genotyping to determine their frequencies in the study population as well as bioinformatics analysis to assess their functional significance in these diseases. The minor alleles of rs17115303 in DAB adaptor protein 1 (DAB1) gene and rs6030462 in protein tyrosine phosphatase receptor type T (PTPRT) gene were correlated with increased risk of both sPD and sALS. Polymorphisms of rs17115303 and rs6030462 were associated with alterations in transcription factor binding sites, secondary structures, long non-coding RNA interactions, and nervous system regulatory networks; these changes involved biological processes associated with neural cell development, differentiation, neurogenesis, migration, axonogenesis, cell adhesion, and metabolism of phosphate-containing compounds. Thus, variants of DAB1 gene (rs17115303) and PTPRT gene (rs6030462) are risk factors common to sPD and sALS in the HPMC. These findings provide insight into the molecular pathogenesis of both diseases and can serve as a basis for the development of targeted therapies.


2021 ◽  
Vol 13 ◽  
Author(s):  
Xia Deng ◽  
Zheng Liu ◽  
Qin Kang ◽  
Lin Lu ◽  
Yu Zhu ◽  
...  

Many clinical symptoms of sporadic Parkinson’s disease (sPD) cannot be completely explained by a lesion of the simple typical extrapyramidal circuit between the striatum and substantia nigra. Therefore, this study aimed to explore the new potential damaged pathogenesis of other brain regions associated with the multiple and complex clinical symptoms of sPD through magnetic resonance imaging (MRI). A total of 65 patients with mid-stage sPD and 35 healthy controls were recruited in this study. Cortical structural connectivity was assessed by seed-based analysis using the vertex-based morphology of MRI. Seven different clusters in the brain regions of cortical thickness thinning derived from the regression analysis using brain size as covariates between sPD and control were selected as seeds. Results showed that the significant alteration of cortical structural connectivity mainly occurred in the bilateral frontal orbital, opercular, triangular, precentral, rectus, supplementary-motor, temporal pole, angular, Heschl, parietal, supramarginal, postcentral, precuneus, occipital, lingual, cuneus, Rolandic-opercular, cingulum, parahippocampal, calcarine, olfactory, insula, paracentral-lobule, and fusiform regions at the mid-stage of sPD. These findings suggested that the extensive alteration of cortical structural connectivity is one of possible pathogenesis resulting in the multiple and complex clinical symptoms in sPD.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 598
Author(s):  
Jeswinder Sian-Hulsmann ◽  
Peter Riederer

The risk of Parkinson’s disease increases with age. However, the etiology of the illness remains obscure. It appears highly likely that the neurodegenerative processes involve an array of elements that influence each other. In addition, genetic, endogenous, or exogenous toxins need to be considered as viable partners to the cellular degeneration. There is compelling evidence that indicate the key involvement of modified α-synuclein (Lewy bodies) at the very core of the pathogenesis of the disease. The accumulation of misfolded α-synuclein may be a consequence of some genetic defect or/and a failure of the protein clearance system. Importantly, α-synuclein pathology appears to be a common denominator for many cellular deleterious events such as oxidative stress, mitochondrial dysfunction, dopamine synaptic dysregulation, iron dyshomeostasis, and neuroinflammation. These factors probably employ a common apoptotic/or autophagic route in the final stages to execute cell death. The misfolded α-synuclein inclusions skillfully trigger or navigate these processes and thus amplify the dopamine neuron fatalities. Although the process of neuroinflammation may represent a secondary event, nevertheless, it executes a fundamental role in neurodegeneration. Some viral infections produce parkinsonism and exhibit similar characteristic neuropathological changes such as a modest brain dopamine deficit and α-synuclein pathology. Thus, viral infections may heighten the risk of developing PD. Alternatively, α-synuclein pathology may induce a dysfunctional immune system. Thus, sporadic Parkinson’s disease is caused by multifactorial trigger factors and metabolic disturbances, which need to be considered for the development of potential drugs in the disorder.


2021 ◽  
Vol 84 ◽  
pp. 29-34
Author(s):  
Li Jiang ◽  
Hong-xu Pan ◽  
Yu-wen Zhao ◽  
Qian Zeng ◽  
Zhen-hua Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document