scholarly journals Mild hypoxia triggers transient blood–brain barrier disruption: a fundamental protective role for microglia

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Sebok K. Halder ◽  
Richard Milner

Abstract We recently demonstrated that when mice are exposed to chronic mild hypoxia (CMH, 8% O2), blood vessels in the spinal cord show transient vascular leak that is associated with clustering and activation of microglia around disrupted vessels. Importantly, microglial depletion profoundly increased hypoxia-induced vascular leak, implying that microglia play a critical role maintaining vascular integrity in the hypoxic spinal cord. The goal of the current study was to examine if microglia play a similar vasculo-protective function in the brain. Employing extravascular fibrinogen leak as an index of blood–brain barrier (BBB) disruption, we found that CMH provoked transient vascular leak in cerebral blood vessels that was associated with activation and aggregation of Mac-1-positive microglia around leaky vessels. Interestingly, CMH-induced vascular leak showed regional selectivity, being much more prevalent in the brainstem and olfactory bulb than the cerebral cortex and cerebellum. Pharmacological depletion of microglia with the colony stimulating factor-1 receptor inhibitor PLX5622, had no effect under normoxic conditions, but markedly increased hypoxia-induced cerebrovascular leak in all regions examined. As in the spinal cord, this was associated with endothelial induction of MECA-32, a marker of leaky CNS endothelium, and greater loss of endothelial tight junction proteins. Brain regions displaying the highest levels of hypoxic-induced vascular leak also showed the greatest levels of angiogenic remodeling, suggesting that transient BBB disruption may be an unwanted side-effect of hypoxic-induced angiogenic remodeling. As hypoxia is common to a multitude of human diseases including obstructive sleep apnea, lung disease, and age-related pulmonary, cardiac and cerebrovascular dysfunction, our findings have important translational implications. First, they point to a potential pathogenic role of chronic hypoxia in triggering BBB disruption and subsequent neurological dysfunction, and second, they demonstrate an important protective role for microglia in maintaining vascular integrity in the hypoxic brain.

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii164-ii164
Author(s):  
Rianne Haumann ◽  
Fatma El-Khouly ◽  
Marjolein Breur ◽  
Sophie Veldhuijzen van Zanten ◽  
Gertjan Kaspers ◽  
...  

Abstract INTRODUCTION Chemotherapy has been unsuccessful for pediatric diffuse midline glioma (DMG) most likely due to an intact blood-brain barrier (BBB). However, the BBB has not been characterized in DMG and therefore its implications for drug delivery are unknown. In this study we characterized the BBB in DMG patients and compared this to healthy controls. METHODS End-stage DMG pontine samples (n=5) were obtained from the VUmc diffuse intrinsic pontine glioma (DIPG) autopsy study and age-matched healthy pontine samples (n=22) were obtained from the NIH NeuroBioBank. Tissues were stained for BBB markers claudin-5, zonula occludens-1, laminin, and PDGFRβ. Claudin-5 stains were used to determine vascular density and diameter. RESULTS In DMG, expression of claudin-5 was reduced and dislocated to the abluminal side of endothelial cells. In addition, the expression of zonula occludens-1 was reduced. The basement membrane protein laminin expression was reduced at the glia limitans in both pre-existent vessels and neovascular proliferation. PDGFRβ expression was not observed in DMG but was present in healthy pons. Furthermore, the number of blood vessels in DMG was significantly (P< 0.01) reduced (13.9 ± 11.8/mm2) compared to healthy pons (26.3 ± 14.2/mm2). Markedly, the number of small blood vessels (< 10µm) was significantly lower (P< 0.01) while larger blood vessels (> 10µm) were not significantly different (P= 0.223). The mean vascular diameter was larger for DMG 9.3 ± 9.9µm compared to 7.7 ± 9.0µm for healthy pons (P= 0.016). CONCLUSION Both the BBB and the vasculature are altered at end-stage DMG. The reduced vascular density might have implications for several drug delivery methods such as focused ultrasound and convection enhanced delivery that are being explored for the treatment of DMG. The functional effects of the structurally altered BBB remain unknown and further research is needed to evaluate the BBB integrity at end-stage DMG


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Yao Yao ◽  
Jyoti Gautam ◽  
Xuanming Zhang

Introduction: Laminin, a major component of the basement membrane, plays an important role in blood brain barrier (BBB) regulation. At the neurovascular unit, astrocytes, brain endothelial cells, and pericytes synthesize and deposit different laminin isoforms into the basement membrane. Previous studies from our laboratory showed that loss of astrocytic laminin induces age-dependent and region-specific BBB breakdown and intracerebral hemorrhage, suggesting a critical role of astrocytic laminin in vascular integrity maintenance. Laminin α4 (predominantly generated by endothelial cells) has been shown to regulate vascular integrity at embryonic/neonatal stage. The role of pericytic laminin in vascular integrity, however, remains elusive. Methods: We investigated the function of pericyte-derived laminin in vascular integrity using laminin conditional knockout mice. Specifically, laminin floxed mice were crossed with PDGFRβ-Cre line to generate mutants (PKO) with laminin deficiency in PDGFRβ + cells, which include both pericytes and vascular smooth muscle cells (vSMCs). To distinguish the contribution of pericyte- and vSMC-derived laminin, we also generated a vSMC-specific condition knockout line (TKO) by crossing the laminin floxed mice with Transgelin-Cre mice. In this study, mice of both genders on a C57Bl6 background were used. At least 5-6 animals were used in biochemical and histological analyses in this study. Results: Pericyte-derived laminin was abrogated in all PKO mice. However, only old but not young PKO mice showed signs of BBB breakdown and reduced vessel density, suggesting age-dependent changes. Consistent with these data, further mechanistic studies revealed reduced tight junction proteins, diminished AQP4 expression, and deceased pericyte coverage in old but not young PKO mice. In addition, neither BBB disruption nor decreased vessel density was observed in TKO mice, suggesting that these vascular defects are due to loss of pericyte- rather than vSMC-derived laminin. Conclusions: These results strongly suggest that pericyte-derived laminin active regulates BBB integrity and vessel density in an age-dependent manner. I would like this abstract to be considered for the Stroke Basic Science Award.


1999 ◽  
Vol 18 (3) ◽  
pp. 174-179 ◽  
Author(s):  
Alka Gupta ◽  
Renu Agarwal ◽  
Girja S Shukla

1 The effect of certain pesticides on the functional integrity of the developing blood-brain barrier (BBB) was studied following single and repeated exposure, and after subsequent withdrawal in rats. 2 Ten-day-old rat pups exposed orally to quinalphos (QP, organophosphate), cypermethrin (CM, pyre-throid) and lindane (LD, organochlorine) at a dose of 1/50th of LD50, showed a significant increase in the brain uptake index (BUI) for a micromolecular tracer, sodium fluorescein (SF), by 97, 37 and 72%, respectively, after 2 h. Residual increases in the BUI were found even after 3 days of the single treatment of QP (28%) and LD (23%). 3 Repeated exposure for 8 days (postnatal days (PND) 10-17) with QP, CM and LD increased the BBB permeability by 130, 80 and 50%, respectively. Recovery from these changes was complete in QP and LD-treated animals after 13 days (PND 18-30) of withdrawal. However, CM showed persistent effects that were normalized only after 43 days (PND 18-60) of withdrawal. 4 A single dose reduced to 1/100th of LD50 also increased BUI in 10-day-old rat pups following QP (20%) and CM (28%) exposure at 2 h. 5 An age-dependent effect of these pesticides was evident from the study showing higher magnitude of BUI changes in 10-day-old rats as compared to that in 15- day-old rats. Furthermore, adult rats did not show any effect on BBB permeability even at a higher dose (1/25th of LD50) of these pesticides given alone or in combination with piperonyl butoxide (600 mg/kg, i.p.) for 3 consecutive days. 6 This study showed that developing BBB is highly vulnerable to single or repeated exposure of certain pesticides. The observed persistent effects during brain development even after withdrawal of the treatment may produce some neurological dysfunction at later life as well.


1993 ◽  
Vol 13 (1) ◽  
pp. 116-124 ◽  
Author(s):  
Hirokazu Tanno ◽  
Russ P. Nockels ◽  
Lawrence H. Pitts ◽  
Linda J. Noble

We have previously developed a model of mild, lateral fluid percussive head injury in the rat and demonstrated that although this injury produced minimal hemorrhage, breakdown of the blood–brain barrier was a prominent feature. The relationship between posttraumatic blood–brain barrier disruption and cellular injury is unclear. In the present study we examined the distribution and time course of expression of the stress protein HSP72 after brain injury and compared these findings with the known pattern of breakdown of the blood–brain barrier after a similar injury. Rats were subjected to a lateral fluid percussive brain injury (4.8–5.2 atm, 20 ms) and killed at 1, 3, and 6 h and 1,3, and 7 days after injury. HSP72-like immunoreactivity was evaluated in sections of brain at the light-microscopic level. The earliest expression of HSP72 occurred at 3 h postinjury and was restricted to neurons and glia in the cortex surrounding a necrotic area at the impact site. By 6 h, light immunostaining was also noted in the pia-arachnoid adjacent to the impact site and in certain blood vessels that coursed through the area of necrosis. Maximal immunostaining was observed by 24 h postinjury, and was primarily associated with the cortex immediately adjacent to the region of necrosis at the impact site. This region consisted of darkly immunostained neurons, glia, and blood vessels. Immunostaining within the region of necrosis was restricted to blood vessels. HSP72-like immunoreactivity was also noted in a limited number of neurons and glia in other brain regions, including the parasagittal cortex, deep cortical layer VI, and CA3 in the posterior hippocampus. Immunoreactive cells in these areas were not apparent until 24 h postinjury. By 7 days postinjury, HSP72-like immunoreactivity was minimal or absent in these injured brains and notable cell loss was apparent only in the impact site. This study demonstrates an early and pronounced expression of HSP72 at the impact site and a more delayed and less prominent expression of this protein in other regions of the brain. These findings parallel the temporal and regional pattern of breakdown of the blood–brain barrier after a similar head injury.


US Neurology ◽  
2010 ◽  
Vol 05 (02) ◽  
pp. 10 ◽  
Author(s):  
Vanessa G Young ◽  
Jillian J Kril ◽  
◽  

White matter hyperintensities (WMHs) are a common finding on magnetic resonance imaging (MRI) scans of elderly subjects. Despite their frequency, the clinical correlates and etiology of WMH remain controversial, with many conflicting results published. This is due, in part, to the varied populations studied. Nevertheless, the prevailing opinion is that these lesions are of vascular origin due to the strong associations with vascular risk factors and stroke. Neuropathological studies have also yielded varied results. Interestingly, while a number of associations with variables such as demyelination and gliosis have been reported, no single pathological variable has been found to account for the MRI changes. The most consistent associations are with reduced vascular integrity and increased blood–brain barrier permeability. Further studies investigating the blood–brain barrier may assist in elucidating the origin of these common abnormalities.


Sign in / Sign up

Export Citation Format

Share Document