scholarly journals Mate choice for major histocompatibility complex (MHC) complementarity in the Yellow-rumped Flycatcher (Ficedula zanthopygia)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mingju E ◽  
Xiaolei Song ◽  
Liufang Wang ◽  
Yimo Yang ◽  
Xianxiu Wei ◽  
...  

Abstract Background Genes of the major histocompatibility complex (MHC) are an important component of the vertebrate immune system and play a significant role in mate choice in animal populations. However, the MHC genetic targets of female mate choice have not been clearly identified, and whether female mate choice is based on neutral genetic characteristics remains an open question. Here, we focus on the effects of morphological traits and genetic similarity among individuals in MHC class IIB (MHC IIB) exon 2 on mating in a sexually dimorphic songbird that exhibits social monogamy with extra-pair paternity (EPP). Methods We sequenced 64 parent–offspring triads sampled over a 3-year period using two MHC class II loci to detect disassortative mating in the Yellow-rumped Flycatcher (Ficedula zanthopygia). Results We found that MHC similarity in social pairs was lower than that in random pairs. Extra-pair mate choice according to MHC IIB was observed, in which females’ extra-pair mates had fewer MHC alleles than their within-pair mates, but there was no significant band-sharing between extra-pair sires and potential extra-pair mates. However, the interaction between the MHC diversity of females and that of the social males affected the occurrence of EPP. Conclusions Our results support the “optimality hypothesis” of MHC-based social and extra-pair choice. Female choice probably maintains a certain level of MHC diversity in offspring in the Yellow-rumped Flycatcher.

2013 ◽  
Vol 280 (1769) ◽  
pp. 20131605 ◽  
Author(s):  
J. C. Winternitz ◽  
S. G. Minchey ◽  
L. Z. Garamszegi ◽  
S. Huang ◽  
P. R. Stephens ◽  
...  

Understanding drivers of genetic diversity at the major histocompatibility complex (MHC) is vitally important for predicting how vertebrate immune defence might respond to future selection pressures and for preserving immunogenetic diversity in declining populations. Parasite-mediated selection is believed to be the major selective force generating MHC polymorphism, and while MHC-based mating preferences also exist for multiple species including humans, the general importance of mate choice is debated. To investigate the contributions of parasitism and sexual selection in explaining among-species variation in MHC diversity, we applied comparative methods and meta-analysis across 112 mammal species, including carnivores, bats, primates, rodents and ungulates. We tested whether MHC diversity increased with parasite richness and relative testes size (as an indicator of the potential for mate choice), while controlling for phylogenetic autocorrelation, neutral mutation rate and confounding ecological variables. We found that MHC nucleotide diversity increased with parasite richness for bats and ungulates but decreased with parasite richness for carnivores. By contrast, nucleotide diversity increased with relative testes size for all taxa. This study provides support for both parasite-mediated and sexual selection in shaping functional MHC polymorphism across mammals, and importantly, suggests that sexual selection could have a more general role than previously thought.


2009 ◽  
Vol 277 (1680) ◽  
pp. 391-398 ◽  
Author(s):  
Manfred Milinski ◽  
Siân W. Griffiths ◽  
Thorsten B. H. Reusch ◽  
Thomas Boehm

Olfactory information about individual major histocompatibility complex (MHC) immune genotypes is important for mate choice in several species. For example, during the mate choice decisions of three-spined sticklebacks, females assess males on the basis of odour cues that convey information about their MHC diversity. Here, we show that an additional ‘maleness’ signal is needed to validate the MHC signal. Furthermore, using interaction between natural odour of sticklebacks and synthetic MHC-ligand peptides, we show that MHC signals are conditional on the reproductive state in males. By contrast, we find that gravid females do not produce such signals. Since MHC olfactory signals relevant to mate choice decisions are conditional upon gender and reproductive state, we suggest that their manufacture is likely to be costly to senders, and therefore, potentially conditional on the health/parasitization status of the sender. We hypothesize that shedding of peptide–MHC complexes compromises immune function, selecting against unconditional use of these signals.


Cells ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 257 ◽  
Author(s):  
Ying Zhu ◽  
Qiu-Hong Wan ◽  
He-Min Zhang ◽  
Sheng-Guo Fang

Few major histocompatibility complex (MHC)-based mate choice studies include all MHC genes at the inter-individual, sperm-egg, and mother-fetus recognition levels. We tested three hypotheses of female mate choice in a 17-year study of the giant panda (Ailuropoda melanoleuca) while using ten functional MHC loci (four MHC class I loci: Aime-C, Aime-F, Aime-I, and Aime-L; six MHC class II loci: Aime-DRA, Aime-DRB3, Aime-DQA1, Aime-DQA2, Aime-DQB1, and Aime-DQB2); five super haplotypes (SuHa, SuHaI, SuHaII, DQ, and DR); and, seven microsatellites. We found female choice for heterozygosity at Aime-C, Aime-I, and DQ and for disassortative mate choice at Aime-C, DQ, and DR at the inter-individual recognition level. High mating success occurred in MHC-dissimilar mating pairs. No significant results were found based on any microsatellite parameters, suggesting that MHCs were the mate choice target and there were no signs of inbreeding avoidance. Our results indicate Aime-DQA1- and Aime-DQA2-associated disassortative selection at the sperm-egg recognition level and a possible Aime-C- and Aime-I-associated assortative maternal immune tolerance mechanism. The MHC genes were of differential importance at the different recognition levels, so all of the functional MHC genes should be included when studying MHC-dependent reproductive mechanisms.


2012 ◽  
Vol 279 (1748) ◽  
pp. 4778-4785 ◽  
Author(s):  
Jennifer L. Bollmer ◽  
Peter O. Dunn ◽  
Corey R. Freeman-Gallant ◽  
Linda A. Whittingham

Females are thought to gain better-quality genes for their offspring by mating with particular males. Genes of the major histocompatibility complex (MHC) play a critical role in adaptive immunity, and several studies have examined female mate choice in relation to MHC variation. In common yellowthroats, females prefer males that have larger black facial masks, an ornament associated with MHC variation, immune function and condition. Here we also tested whether mating patterns are directly correlated with MHC diversity or similarity. Using pyrosequencing, we found that the presence of extra-pair young in the brood was not related to male MHC diversity or similarity between the female and her within-pair mate. Furthermore, extra-pair sires did not differ in overall diversity from males they cuckolded, or in their similarity to the female. MHC diversity is extremely high in this species, and it may limit the ability of females to assess MHC variation in males. Thus, mating may be based on ornaments, such as mask size, which are better indicators of overall male health and genetic quality.


2013 ◽  
Vol 9 (1) ◽  
pp. 20120900 ◽  
Author(s):  
Katrina Morris ◽  
Jeremy J. Austin ◽  
Katherine Belov

The Tasmanian devil ( Sarcophilus harrisii ) is at risk of extinction owing to the emergence of a contagious cancer known as devil facial tumour disease (DFTD). The emergence and spread of DFTD has been linked to low genetic diversity in the major histocompatibility complex (MHC). We examined MHC diversity in historical and ancient devils to determine whether loss of diversity is recent or predates European settlement in Australia. Our results reveal no additional diversity in historical Tasmanian samples. Mainland devils had common modern variants plus six new variants that are highly similar to existing alleles. We conclude that low MHC diversity has been a feature of devil populations since at least the Mid-Holocene and could explain their tumultuous history of population crashes.


2020 ◽  
Vol 375 (1800) ◽  
pp. 20190260 ◽  
Author(s):  
Jan Havlíček ◽  
Jamie Winternitz ◽  
S. Craig Roberts

The major histocompatibility complex (MHC) is a core part of the adaptive immune system. As in other vertebrate taxa, it may also affect human chemical communication via odour-based mate preferences, with greater attraction towards MHC-dissimilar partners. However, despite some well-known findings, the available evidence is equivocal and made complicated by varied approaches to quantifying human mate choice. To address this, we here conduct comprehensive meta-analyses focusing on studies assessing: (i) genomic mate selection, (ii) relationship satisfaction, (iii) odour preference, and (iv) all studies combined. Analysis of genomic studies reveals no association between MHC-dissimilarity and mate choice in actual couples; however, MHC effects appear to be independent of the genomic background. The effect of MHC-dissimilarity on relationship satisfaction was not significant, and we found evidence for publication bias in studies on this area. There was also no significant association between MHC-dissimilarity and odour preferences. Finally, combining effect sizes from all genomic, relationship satisfaction, odour preference and previous mate choice studies into an overall estimate showed no overall significant effect of MHC-similarity on human mate selection. Based on these findings, we make a set of recommendations for future studies, focusing both on aspects that should be implemented immediately and those that lurk on the far horizon. We need larger samples with greater geographical and cultural diversity that control for genome-wide similarity. We also need more focus on mechanisms of MHC-associated odour preferences and on MHC-associated pregnancy loss. This article is part of the Theo Murphy meeting issue ‘Olfactory communication in humans’.


Sign in / Sign up

Export Citation Format

Share Document