mhc iib
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 5)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrea Šimková ◽  
Lenka Gettová ◽  
Kristína Civáňová ◽  
Mária Seifertová ◽  
Michal Janáč ◽  
...  

AbstractThe genes of the major histocompatibility complex (MHC) are an essential component of the vertebrate immune system and MHC genotypes may determine individual susceptibility to parasite infection. In the wild, selection that favors MHC variability can create situations in which interspecies hybrids experience a survival advantage. In a wild system of two naturally hybridizing leuciscid fish, we assessed MHC IIB genetic variability and its potential relationships to hosts’ ectoparasite communities. High proportions of MHC alleles and parasites were species-specific. Strong positive selection at specific MHC codons was detected in both species and hybrids. MHC allele expression in hybrids was slightly biased towards the maternal species. Controlling for a strong seasonal effect on parasite communities, we found no clear associations between host-specific parasites and MHC alleles or MHC supertypes. Hybrids shared more MHC alleles with the more MHC-diverse parental species, but expressed intermediate numbers of MHC alleles and positively selected sites. Hybrids carried significantly fewer ectoparasites than either parent species, suggesting a hybrid advantage via potential heterosis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mingju E ◽  
Xiaolei Song ◽  
Liufang Wang ◽  
Yimo Yang ◽  
Xianxiu Wei ◽  
...  

Abstract Background Genes of the major histocompatibility complex (MHC) are an important component of the vertebrate immune system and play a significant role in mate choice in animal populations. However, the MHC genetic targets of female mate choice have not been clearly identified, and whether female mate choice is based on neutral genetic characteristics remains an open question. Here, we focus on the effects of morphological traits and genetic similarity among individuals in MHC class IIB (MHC IIB) exon 2 on mating in a sexually dimorphic songbird that exhibits social monogamy with extra-pair paternity (EPP). Methods We sequenced 64 parent–offspring triads sampled over a 3-year period using two MHC class II loci to detect disassortative mating in the Yellow-rumped Flycatcher (Ficedula zanthopygia). Results We found that MHC similarity in social pairs was lower than that in random pairs. Extra-pair mate choice according to MHC IIB was observed, in which females’ extra-pair mates had fewer MHC alleles than their within-pair mates, but there was no significant band-sharing between extra-pair sires and potential extra-pair mates. However, the interaction between the MHC diversity of females and that of the social males affected the occurrence of EPP. Conclusions Our results support the “optimality hypothesis” of MHC-based social and extra-pair choice. Female choice probably maintains a certain level of MHC diversity in offspring in the Yellow-rumped Flycatcher.


Author(s):  
Anat Belasen ◽  
Kevin Amses ◽  
Rebecca Clemons ◽  
Guilherme Becker ◽  
Felipe Toledo ◽  
...  

Habitat fragmentation and infectious disease threaten amphibians globally, but little is known about how these two threats interact. In this study, we examined the effects of Brazilian Atlantic Forest habitat fragmentation on frog genetic diversity at an immune locus known to affect disease susceptibility in amphibians, the MHC IIB locus. We used a custom high-throughput assay to sequence the MHC IIB locus across six focal frog species in two regions of the Atlantic Forest. We also used a molecular assay to quantify infections by the fungal pathogen Batrachochytrium dendrobatidis (Bd). We found that habitat fragmentation is associated with genetic erosion at the MHC IIB locus, and that this erosion is most severe in frog species restricted to intact forests. Significant Bd infections were recovered only in one Atlantic Forest region, potentially due to the relatively higher elevation. In this region, forest specialists showed an increase in both Bd prevalence and loads in fragmented habitats. We also found that reduced population-level MHC IIB diversity was associated with increased Bd infection risk. On the individual-level, MHC IIB heterozygotes (by allelic genotype as well as supertype) exhibited a reduced risk of Bd infection. Our results suggest that habitat fragmentation increases infection susceptibility in amphibians, mediated at least in part through loss of immunogenetic diversity. Our findings have implications for the conservation of fragmented populations in the face of emerging infectious diseases.


2020 ◽  
Vol 75 (12) ◽  
pp. 2333-2341
Author(s):  
Chad R Straight ◽  
Olivia R Ringham ◽  
Jenna M Bartley ◽  
Spencer R Keilich ◽  
George A Kuchel ◽  
...  

Abstract Skeletal muscle myopathies represent a common non-pulmonary manifestation of influenza infection, leading to reduced physical function and hospitalization in older adults. However, underlying mechanisms remain poorly understood. Our study examined the effects of influenza virus A pulmonary infection on contractile function at the cellular (single fiber) and molecular (myosin-actin interactions and myofilament properties) levels in soleus and extensor digitorum longus muscles of aged (20 months) C57BL/6 male mice that were healthy or flu-infected for 7 (7-days post-infection; 7-DPI) or 12 days (12-DPI). Cross-sectional area (CSA) of myosin heavy chain (MHC) IIA and IIB fibers was reduced at 12-DPI relative to 7-DPI and healthy. Maximal isometric force in MHC IIA fibers was also reduced at 12-DPI relative to 7-DPI and healthy, resulting in no change in specific force (maximal isometric force divided by CSA). In contrast, MHC IIB fibers produced greater isometric force and specific force at 7-DPI compared to 12-DPI or healthy. The increased specific force in MHC IIB fibers was likely due to greater myofilament lattice stiffness and/or an increased number or stiffness of strongly bound myosin-actin cross-bridges. At the molecular level, cross-bridge kinetics were slower in MHC IIA fibers with infection, while changes in MHC IIB fibers were largely absent. In both fiber types, greater myofilament lattice stiffness was positively related to specific force. This study provides novel evidence that cellular and molecular contractile function is impacted by influenza infection in a fiber type-specific manner, suggesting potential molecular mechanisms to help explain the impact of flu-induced myopathies.


Author(s):  
Anat M. Belasen ◽  
Molly C. Bletz ◽  
Domingos da Silva Leite ◽  
Luís Felipe Toledo ◽  
Timothy Y. James

2018 ◽  
Vol 307 (1) ◽  
pp. 61-70 ◽  
Author(s):  
L. Talarico ◽  
W. Babik ◽  
S. Marta ◽  
M. Mattoccia

2016 ◽  
Author(s):  
William E. Stutz ◽  
Daniel I. Bolnick

AbstractMajor histocompatibility (MHC) genes encode proteins that play a central role in vertebrates’ adaptive immunity to parasites. MHC loci are among the most polymorphic in vertebrates’ genomes, inspiring many studies to identify evolutionary processes driving MHC polymorphism within populations, and divergence between populations. Leading hypotheses include balancing selection favoring rare alleles within populations, and spatially divergent selection. These hypotheses do not always produce diagnosably distinct predictions, causing many studies of MHC to yield inconsistent or ambiguous results. We suggest a novel strategy to distinguish balancing versus divergent selection on MHC, taking advantage of natural admixture between parapatric populations. With divergent selection, immigrant alleles will be more infected and less fit because they are susceptible to novel parasites in their new habitat. With balancing selection, locally-rare immigrant alleles will be more fit (less infected). We tested these contrasting predictions using threespine stickleback from three replicate pairs of parapatric lake and stream habitats. We found numerous positive and negative associations between particular MHC IIβ alleles and particular parasite taxa. A few allele-parasite comparisons supported balancing selection, others supported divergent selection between habitats. But, there was no overall tendency for fish with immigrant MHC alleles to be more or less heavily infected. Instead, locally rare MHC alleles (not necessarily immigrants) were associated with heavier infections. Our results illustrate the complex relationship between MHC IIβ allelic variation and spatially varying multi-species parasite communities: different hypotheses may be concurrently true for different allele-parasite combinations.


PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0163456 ◽  
Author(s):  
John A. Eimes ◽  
Sang-im Lee ◽  
Andrea K. Townsend ◽  
Piotr Jablonski ◽  
Isao Nishiumi ◽  
...  
Keyword(s):  

2015 ◽  
Author(s):  
John A Eimes ◽  
Andrea K Townsend ◽  
Irem Sepil ◽  
Isao Nishiumi ◽  
Yoko Satta

A distinguishing characteristic of genes that code for the major histocompatibility complex (MHC) is that alleles often share more similarity between, rather than within species. There are two likely mechanisms that can explain this pattern: convergent evolution and trans-species polymorphism (TSP), in which ancient allelic lineages are maintained by balancing selection and retained by descendant species. Distinguishing between these two mechanisms has major implications in how we view adaptation of immune genes. In this study we analyzed exon 2 of the MHC class IIB in three passerine bird species in the genus Corvus: jungle crows (Corvus macrorhynchos japonensis) American crows (C. brachyrhynchos) and carrion crows (C. corone orientalis). Carrion crows and American crows are recently diverged, but allopatric, sister species, whereas carrion crows and jungle crows are more distantly related but sympatric species, and possibly share pathogens linked to MHC IIB polymorphisms. These patterns of evolutionary divergence and current geographic ranges enabled us to test for trans-species polymorphism and convergent evolution of the MHC IIB in crows. Phylogenetic reconstructions of MHC IIB sequences revealed several well supported interspecific clusters containing all three species, and there was no biased clustering of variants among the sympatric carrion crows and jungle crows. The topologies of phylogenetic trees constructed from putatively selected sites were remarkably different than those constructed from putatively neutral sites. In addition, trees constructed non-synonymous substitutions from a continuous fragment of exon 2 had more, and generally more inclusive, supported interspecific MHC IIB variant clusters than those constructed from the same fragment using synonymous substitutions. These phylogenetic patterns suggest that recombination, especially gene conversion, has partially erased the signal of allelic ancestry in these species. While clustering of positively selected amino acids by supertyping revealed a single supertype shared by only jungle and carrion crows, a pattern consistent with convergence, the overall phylogenetic patterns we observed suggest that TSP, rather than convergence, explains the interspecific allelic similarity of MHC IIB genes in these species of crows.


2015 ◽  
Author(s):  
John A Eimes ◽  
Andrea K Townsend ◽  
Irem Sepil ◽  
Isao Nishiumi ◽  
Yoko Satta

A distinguishing characteristic of genes that code for the major histocompatibility complex (MHC) is that alleles often share more similarity between, rather than within species. There are two likely mechanisms that can explain this pattern: convergent evolution and trans-species polymorphism (TSP), in which ancient allelic lineages are maintained by balancing selection and retained by descendant species. Distinguishing between these two mechanisms has major implications in how we view adaptation of immune genes. In this study we analyzed exon 2 of the MHC class IIB in three passerine bird species in the genus Corvus: jungle crows (Corvus macrorhynchos japonensis) American crows (C. brachyrhynchos) and carrion crows (C. corone orientalis). Carrion crows and American crows are recently diverged, but allopatric, sister species, whereas carrion crows and jungle crows are more distantly related but sympatric species, and possibly share pathogens linked to MHC IIB polymorphisms. These patterns of evolutionary divergence and current geographic ranges enabled us to test for trans-species polymorphism and convergent evolution of the MHC IIB in crows. Phylogenetic reconstructions of MHC IIB sequences revealed several well supported interspecific clusters containing all three species, and there was no biased clustering of variants among the sympatric carrion crows and jungle crows. The topologies of phylogenetic trees constructed from putatively selected sites were remarkably different than those constructed from putatively neutral sites. In addition, trees constructed non-synonymous substitutions from a continuous fragment of exon 2 had more, and generally more inclusive, supported interspecific MHC IIB variant clusters than those constructed from the same fragment using synonymous substitutions. These phylogenetic patterns suggest that recombination, especially gene conversion, has partially erased the signal of allelic ancestry in these species. While clustering of positively selected amino acids by supertyping revealed a single supertype shared by only jungle and carrion crows, a pattern consistent with convergence, the overall phylogenetic patterns we observed suggest that TSP, rather than convergence, explains the interspecific allelic similarity of MHC IIB genes in these species of crows.


Sign in / Sign up

Export Citation Format

Share Document