ailuropoda melanoleuca
Recently Published Documents


TOTAL DOCUMENTS

369
(FIVE YEARS 76)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Ruixue Zhang ◽  
Hemeng Dong ◽  
Pengpeng Zhao ◽  
Chunmei Shang ◽  
Hang Qi ◽  
...  

Abstract Background Semen cryopreservation has become an essential tool for conservation efforts of the giant panda (Ailuropoda melanoleuca); however, it is severely detrimental to sperm quality. Evidence has shown that antioxidants have the potential to reverse cryopreservation-induced damage in sperm. The purpose of this study was to screen effective antioxidants that could retain sperm quality during cryopreservation and to determine the optimal dose. Seven antioxidant groups, including resveratrol (RSV = 50 μM, RSV = 100 μM, RSV = 150 μM), lycium barbarum polysaccharide (LBP = 2 mg/mL, LBP = 4 mg/mL), laminaria japonica polysaccharides (LJP = 1 mg/mL) or combination (LBP = 2 mg/mL, LJP = 1 mg/mL and RSV = 100 μM) were assessed. Results RSV, LBP, LJP, or a combination of RSV, LBP, and LJP added to the freezing medium significantly improved sperm progressive motility, plasma membrane integrity, acrosome integrity, and mitochondrial activity during the cryopreservation process. Furthermore, the activities of glutathione peroxidase and superoxide dismutase were also improved. The levels of reactive oxygen species and malondialdehyde in semen were notably reduced. Hyaluronidase activity and acrosin activity were significantly increased in LBP-treated sperm. However, sperm total motility and DNA integrity were not significantly different between the groups. Conclusions RSV (50 μM) or LBP (2 mg/mL) are the best candidate antioxidants for inclusion in the freezing medium to improve the quality of giant panda spermatozoa during semen cryopreservation.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1701
Author(s):  
Zhenjiang Song ◽  
Yi Li

The giant panda (Ailuropoda melanoleuca) is a symbolic and flagship species in the field of endangered wildlife conservation. We studied the changing and driving factors of landscape patterns in Sichuan giant panda habitats through image interpretation and ecological niche evaluation models. According to land-use and cover-change analysis, we also studied the structural changes in habitat over the past two decades and used empirical analysis to evaluate the relative ecological niche widths and overlap of giant panda distribution areas in 1995 and 2015. It is found the area of non-forested land decreased significantly from 1995 to 2015. It is interesting that the high-quality land-use types tended to decrease but low/middle-quality land-use types tended to increase over the past 20 years. Giant panda conservation projects in China have promoted changes in conservation thought and management, as well as the innovation of technical means over the studied period. The goals of Chinese giant panda conservation projects are not only to facilitate giant panda reproduction but also to alleviate the contradiction between conservation and development and promote the coexistence of humans and giant pandas.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3332
Author(s):  
Naxun Zhao ◽  
Ximing Zhang ◽  
Guoyu Shan ◽  
Xinping Ye

Understanding how climate change alters the spatial aggregation of sympatric species is important for biodiversity conservation. Previous studies usually focused on spatial shifting of species but paid little attention to changes in interspecific competitions under climate change. In this study, we evaluated the potential effects of climate change on the spatial aggregation of giant pandas (Ailuropoda melanoleuca) and three sympatric competitive species (i.e., black bears (Ursus thibetanus), golden takins (Budorcas taxicolor), and wild boars (Sus scrofa)) in the Qinling Mountains, China. We employed an ensemble species distribution modeling (SDM) approach to map the current spatial distributions of giant pandas and sympatric animals and projected them to future climate scenarios in 2050s and 2070s. We then examined the range overlapping and niche similarities of these species under different climate change scenarios. The results showed that the distribution areas of giant pandas and sympatric species would decrease remarkably under future climate changes. The shifting directions of the overlapping between giant pandas and sympatric species vary under different climate change scenarios. In conclusion, future climate change greatly shapes the spatial overlapping pattern of giant pandas and sympatric species in the Qinling Mountains, while interspecific competition would be intensified under both mild and worst-case climate change scenarios.


2021 ◽  
Vol 8 ◽  
Author(s):  
Songyi Ning ◽  
Xiang Lu ◽  
Min Zhao ◽  
Xiaochun Wang ◽  
Shixing Yang ◽  
...  

The giant panda (Ailuropoda melanoleuca) is one of the most endangered mammals in the world; anthropogenic habitat loss and poaching still threaten the survival of wild pandas. Viral infection has become one of the potential threats to the health of these animals, but the available information related to these infections is still limited. In order to detect possible vertebrate viruses, the virome in the fecal samples of seven wild giant pandas from Qinling Mountains was investigated by using the method of viral metagenomics. From the fecal virome of wild giant pandas, we determined six nearly complete genomes belonging to the order Picornavirales, two of which may be qualified as a novel virus family or genus. In addition, four complete genomes belonging to the Genomoviridae family were also fully characterized. This virological investigation has increased our understanding of the gut viral community in giant pandas. Whether these viruses detected in fecal samples can really infect giant panda needs further research.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xiaoping Ma ◽  
Gen Li ◽  
Yaozhang Jiang ◽  
Ming He ◽  
Chengdong Wang ◽  
...  

Dermatomycosis is the second major cause of morbidity in giant pandas (Ailuropoda melanoleuca), and seriously endangers its health. Previous observations indicated that the occurrence of dermatomycosis in the giant panda varies in different seasons. The skin microbiota is a complex ecosystem, but knowledge on the community structure and the pathogenic potentials of fungi on the skin of the giant panda remains limited. In this study, samples from the giant panda skin in different seasons were collected, and the mycobiota were profiled by 18S rRNA gene sequencing. In total, 375 genera in 38 phyla were detected, with Ascomycota, Basidiomycota, Streptophyta, and Chlorophyta as the predominant phyla and Trichosporon, Guehomyces, Davidiella, Chlorella, Asterotremella, and Klebsormidium as the predominant genera. The skin mycobiota of the giant panda changed in the seasons, and the diversity and abundance of the skin fungi were significantly higher in spring, autumn, and summer than in the winter. Several dermatomycosis-associated fungi were detected as opportunists in the skin mycobiota of healthy giant pandas. Clinical dermatomycosis in the giant panda is observed more in summer and autumn. In this study, the results indicated that the high diversity and abundance of the skin fungi may have enhanced the occurrence of dermatomycosis in autumn and summer, and that dermatomycosis-associated fungi are the normal components of the skin mycobiota.


2021 ◽  
Vol 95 ◽  
pp. 105077
Author(s):  
Ziyuan Dai ◽  
Hao Wang ◽  
Zhanghao Feng ◽  
Li Ma ◽  
Shixing Yang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ossi Nokelainen ◽  
Nicholas E. Scott-Samuel ◽  
Yonggang Nie ◽  
Fuwen Wei ◽  
Tim Caro

AbstractThe giant panda (Ailuropoda melanoleuca) is an iconic mammal, but the function of its black-and-white coloration is mysterious. Using photographs of giant pandas taken in the wild and state-of-the-art image analysis, we confirm the counterintuitive hypothesis that their coloration provides camouflage in their natural environment. The black fur blends into dark shades and tree trunks, whereas white fur matches foliage and snow when present, and intermediate pelage tones match rocks and ground. At longer viewing distances giant pandas show high edge disruption that breaks up their outline, and up close they rely more on background matching. The results are consistent across acuity-corrected canine, feline, and human vision models. We also show quantitatively that the species animal-to-background colour matching falls within the range of other species that are widely recognised as cryptic. Thus, their coloration is an adaptation to provide background matching in the visual environment in which they live and simultaneously to afford distance-dependent disruptive coloration, the latter of which constitutes the first computational evidence of this form of protective coloration in mammals.


Zoo Biology ◽  
2021 ◽  
Author(s):  
Gabriel Magnus ◽  
Christopher Dutton ◽  
Gabriela Mastromonaco ◽  
Cathy Gartley ◽  
Suzanne MacDonald ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document