scholarly journals Functional evaluation of gene mutations in Long QT Syndrome: strength of evidence from in vitro assays for deciphering variants of uncertain significance

2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Jules C. Hancox ◽  
Alan G. Stuart ◽  
Stephen C. Harmer

Abstract Background Genetic screening is now commonplace for patients suspected of having inherited cardiac conditions. Variants of uncertain significance (VUS) in disease-associated genes pose problems for the diagnostician and reliable methods for evaluating VUS function are required. Although function is difficult to interrogate for some genes, heritable channelopathies have established mechanisms that should be amenable to well-validated evaluation techniques. The cellular electrophysiology techniques of ‘voltage-’ and ‘patch-’ clamp have a long history of successful use and have been central to identifying both the roles of genes involved in different forms of congenital Long QT Syndrome (LQTS) and the mechanisms by which mutations lead to aberrant ion channel function underlying clinical phenotypes. This is particularly evident for KCNQ1, KCNH2 and SCN5A, mutations in which underlie > 90% of genotyped LQTS cases (the LQT1-LQT3 subtypes). Recent studies utilizing high throughput (HT) planar patch-clamp recording have shown it to discriminate effectively between rare benign and pathological variants, studied through heterologous expression of recombinant channels. In combination with biochemical methods for evaluating channel trafficking and supported by biophysical modelling, patch clamp also provides detailed mechanistic insight into the functional consequences of identified mutations. Whilst potentially powerful, patient-specific stem-cell derived cardiomyocytes and genetically modified animal models are currently not well-suited to high throughput VUS study. Conclusion The widely adopted 2015 American College of Medical Genetics (ACMG) and Association for Molecular Pathology (AMP) guidelines for the interpretation of sequence variants include the PS3 criterion for consideration of evidence from well-established in vitro or in vivo assays. The wealth of information on underlying mechanisms of LQT1-LQT3 and recent HT patch clamp data support consideration of patch clamp data together (for LQT1 and LQT2) with information from biochemical trafficking assays as meeting the PS3 criterion of well established assays, able to provide ‘strong’ evidence for functional pathogenicity of identified VUS.

2017 ◽  
Vol 113 (5) ◽  
pp. 531-541 ◽  
Author(s):  
Marcella Rocchetti ◽  
Luca Sala ◽  
Lisa Dreizehnter ◽  
Lia Crotti ◽  
Daniel Sinnecker ◽  
...  

2010 ◽  
Vol 363 (15) ◽  
pp. 1397-1409 ◽  
Author(s):  
Alessandra Moretti ◽  
Milena Bellin ◽  
Andrea Welling ◽  
Christian Billy Jung ◽  
Jason T. Lam ◽  
...  

2004 ◽  
Vol 310 (2) ◽  
pp. 599-605 ◽  
Author(s):  
Lin Wu ◽  
John C. Shryock ◽  
Yejia Song ◽  
Yuan Li ◽  
Charles Antzelevitch ◽  
...  

2019 ◽  
Vol 40 (23) ◽  
pp. 1832-1836 ◽  
Author(s):  
Peter J Schwartz ◽  
Massimiliano Gnecchi ◽  
Federica Dagradi ◽  
Silvia Castelletti ◽  
Gianfranco Parati ◽  
...  

2010 ◽  
Vol 88 (12) ◽  
pp. 1181-1190 ◽  
Author(s):  
Jonathan M. Cordeiro ◽  
Guillermo J. Perez ◽  
Nicole Schmitt ◽  
Ryan Pfeiffer ◽  
Vladislav V. Nesterenko ◽  
...  

Long QT syndrome (LQTS) is an inherited disorder characterized by prolonged QT intervals and potentially life-threatening arrhythmias. Mutations in 12 different genes have been associated with LQTS. Here we describe a patient with LQTS who has a mutation in KCNQ1 as well as a polymorphism in KCNH2. The proband (MMRL0362), a 32-year-old female, exhibited multiple ventricular extrasystoles and one syncope. Her ECG (QT interval corrected for heart rate (QTc) = 518ms) showed an LQT2 morphology in leads V4–V6 and LQT1 morphology in leads V1–V2. Genomic DNA was isolated from lymphocytes. All exons and intron borders of 7 LQTS susceptibility genes were amplified and sequenced. Variations were detected predicting a novel missense mutation (V110I) in KCNQ1, as well as a common polymorphism in KCNH2 (K897T). We expressed wild-type (WT) or V110I Kv7.1 channels in CHO-K1 cells cotransfected with KCNE1 and performed patch-clamp analysis. In addition, WT or K897T Kv11.1 were also studied by patch clamp. Current–voltage (I-V) relations for V110I showed a significant reduction in both developing and tail current densities compared with WT at potentials >+20 mV (p < 0.05; n = 8 cells, each group), suggesting a reduction in IKs currents. K897T- Kv11.1 channels displayed a significantly reduced tail current density compared with WT-Kv11.1 at potentials >+10 mV. Interestingly, channel availability assessed using a triple-pulse protocol was slightly greater for K897T compared with WT (V0.5 = –53.1 ± 1.13 mV and –60.7 ± 1.15 mV for K897T and WT, respectively; p < 0.05). Comparison of the fully activated I-V revealed no difference in the rectification properties between WT and K897T channels. We report a patient with a loss-of-function mutation in KCNQ1 and a loss-of-function polymorphism in KCNH2. Our results suggest that a reduction of both IKr and IKs underlies the combined LQT1 and LQT2 phenotype observed in this patient.


2011 ◽  
Vol 650 (1) ◽  
pp. 309-316 ◽  
Author(s):  
Jürgen Biermann ◽  
Kezhong Wu ◽  
Katja E. Odening ◽  
Stefan Asbach ◽  
Gideon Koren ◽  
...  

Author(s):  
Andrew M Glazer ◽  
Giovanni E. Davogustto ◽  
Christian M. Shaffer ◽  
Carlos G Vanoye ◽  
Reshma R. Desai ◽  
...  

Background: Sequencing Mendelian arrhythmia genes in individuals without an indication for arrhythmia genetic testing can identify carriers of pathogenic or likely pathogenic (P/LP) variants. However, the extent to which these variants are associated with clinically meaningful phenotypes before or after return of variant results (RoR) is unclear. In addition, the majority of discovered variants are currently classified as Variants of Uncertain Significance (VUS), limiting clinical actionability. Methods: The eMERGE-III study is a multi-center prospective cohort which included 21,846 participants without prior indication for cardiac genetic testing. Participants were sequenced for 109 Mendelian disease genes, including 10 linked to arrhythmia syndromes. Variant carriers were assessed with Electronic Health Record (EHR)-derived phenotypes and follow-up clinical examination. Selected VUS (n=50) were characterized in vitro with automated electrophysiology experiments in HEK293 cells. Results: As previously reported, 3.0% of participants had pathogenic or likely pathogenic (P/LP) variants in the 109 genes. Herein, we report 120 participants (0.6%) with P/LP arrhythmia variants. Compared to non-carriers, arrhythmia P/LP carriers had a significantly higher burden of arrhythmia phenotypes in their EHRs. Fifty four participants had variant results returned. Nineteen of these 54 participants had inherited arrhythmia syndrome diagnoses (primarily long QT syndrome), and 12/19 of these diagnoses were made only after variant results were returned (0.05%). After in vitro functional evaluation of 50 variants of uncertain significance (VUS), we reclassified 11 variants: 3 to likely benign and 8 to P/LP. Conclusions: Genome sequencing in a large population without indication for arrhythmia genetic testing identified phenotype-positive carriers of variants in congenital arrhythmia syndrome disease genes. As large numbers of people are sequenced, the disease risk from rare variants in arrhythmia genes can be assessed by integrating genomic screening, EHR phenotypes, and in vitro functional studies.


Sign in / Sign up

Export Citation Format

Share Document