scholarly journals Clinical applications of custom 3D printed implants in complex lower extremity reconstruction

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Rishin J. Kadakia ◽  
Colleen M. Wixted ◽  
Nicholas B. Allen ◽  
Andrew E. Hanselman ◽  
Samuel B. Adams

Abstract Background Three dimensional printing has greatly advanced over the past decade and has made an impact in several industries. Within the field of orthopaedic surgery, this technology has vastly improved education and advanced patient care by providing innovating tools to complex clinical problems. Anatomic models are frequently used for physician education and preoperative planning, and custom instrumentation can assist in complex surgical cases. Foot and ankle reconstruction is often complicated by multiplanar deformity and bone loss. 3D printing technology offers solutions to these complex cases with customized implants that conform to anatomy and patient specific instrumentation that enables precise deformity correction. Case presentation The authors present four cases of complex lower extremity reconstruction involving segmental bone loss and deformity – failed total ankle arthroplasty, talus avascular necrosis, ballistic trauma, and nonunion of a tibial osteotomy. Traditional operative management is challenging in these cases and there are high complication rates. Each case presents a unique clinical scenario for which 3D printing technology allows for innovative solutions. Conclusions 3D printing is becoming more widespread within orthopaedic surgery. This technology provides surgeons with tools to better tackle some of the more challenging clinical cases especially within the field of foot and ankle surgery.

2021 ◽  
Vol 2 (2) ◽  
pp. 289-302
Author(s):  
Antreas Kantaros ◽  
Dimitrios Piromalis

Over time, the fabrication of lattice, porous structures has always been a controversial field for researchers and practitioners. Such structures could be fabricated in a stochastic way, thus, with limited control over the actual porosity percentage. The emerging technology of 3D printing, offered an automated process that did not require the presence of molds and operated on a layer-by-layer deposition basis, provided the ability to fabricate almost any shape through a variety of materials and methods under the umbrella of the ASTM terminology “additive manufacturing”. In the field of biomedical engineering, the technology was embraced and adopted for relevant applications, offering an elevated degree of design freedom. Applications range in the cases where custom-shaped, patient-specific items have to be produced. Scaffold structures were already a field under research when 3D printing was introduced. These structures had to act as biocompatible, bioresorbable and biodegradable substrates, where the human cells could attach and proliferate. In this way, tissue could be regenerated inside the human body. One of the most important criteria for such a structure to fulfil is the case-specific internal geometry design with a controlled porosity percentage. 3D printing technology offered the ability to tune the internal porosity percentage with great accuracy, along with the ability to fabricate any internal design pattern. In this article, lattice scaffold structures for tissue regeneration are overviewed, and their evolution upon the introduction of 3D printing technology and its employment in their fabrication is described.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Changgui Zhang ◽  
Jin Cao ◽  
Hongli Zhu ◽  
Huaquan Fan ◽  
Liu Yang ◽  
...  

Objective. To study the efficacy of arthroscopy for treating symptomatic bone cysts of the foot and ankle through the follow-up of patients and to further explore the application value of 3D printing technology in this treatment. Methods. Twenty-one patients with symptomatic bone cysts in the foot and ankle who underwent arthroscopic surgery in our Center from March 2010 to December 2018 were enrolled, including 11 in the experimental group and 10 in the control group. For the control group, C-arm fluoroscopy was used intraoperatively to confirm the positioning of the cysts; for the experimental group, a 3D model of the lesion tissue and the 3D-printed individualized guides were prepared to assist the positioning of the cysts. Debridement of the lesion tissues was conducted under an arthroscope. Regular follow-ups were conducted. The time of establishing arthroscopic approaches and the times of intraoperative fluoroscopy between the two groups were compared. Significance was determined as P < 0.05 . Results. The postoperative pathology of the patients confirmed the diagnosis. No significant perioperative complications were observed in either group, and no recurrence of bone cysts was seen at the last follow-up. The VAS scores and AOFAS scores of the two groups at the last follow-up were significantly improved compared with the preoperative data, but there was no statistical difference between the two groups. All surgeries were performed by the same senior surgeon. The time taken to establish the arthroscopic approaches between the two groups was statistically significant ( P < 0.001 ), and the times of intraoperative fluoroscopy required to establish the approach were also statistically significant ( P < 0.001 ). The intraoperative bleeding between the two groups was statistically significant ( P < 0.01 ). There was 1 case in each group whose postoperative CT showed insufficient bone grafting, but no increase in cavity volume was observed during the follow-up. Conclusion. With the assistance of the 3D printing technology for treating symptomatic bone cysts of the ankle and foot, the surgeon can design the operation preoperatively and perform the rehearsal, which would make it easier to establish the arthroscopic approach, better understand the anatomy, and make the operation smoother. This trial is registered with http://www.clinicaltrials.govNCT03152916.


2020 ◽  
Vol 189 (4) ◽  
pp. 1215-1221 ◽  
Author(s):  
Ross G. Sherwood ◽  
Niall Murphy ◽  
Gerard Kearns ◽  
Conor Barry

2020 ◽  
pp. 193864002097141
Author(s):  
Rishin J. Kadakia ◽  
Colleen M. Wixted ◽  
Cambre N. Kelly ◽  
Andrew E. Hanselman ◽  
Samuel B. Adams

Three-dimensional (3D) printing technology has advanced greatly over the past decade and is being used extensively throughout the field of medicine. Several orthopaedic surgery specialties have demonstrated that 3D printing technology can improve patient care and physician education. Foot and ankle pathology can be complex as the 3D anatomy can be challenging to appreciate. Deformity can occur in several planes simultaneously and bone defects either from previous surgery or trauma can further complicate surgical correction. Three-dimensional printing technology provides an avenue to tackle the challenges associated with complex foot and ankle pathology. A basic understanding of how these implants are designed and made is important for surgeons as this technology is becoming more widespread and the clinical applications continue to grow within foot and ankle surgery. Levels of Evidence: Level V


2021 ◽  
Vol 6 (2) ◽  
pp. 130-138
Author(s):  
Mohsen Raza ◽  
Daniel Murphy ◽  
Yael Gelfer

Three-dimensional (3D) printing technology is increasingly being utilized in various surgical specialities. In paediatric orthopaedics it has been applied in the pre-operative and intra-operative stages, allowing complex deformities to be replicated and patient-specific instrumentation to be used. This systematic review analyses the literature on the effect of 3D printing on paediatric orthopaedic osteotomy outcomes. A systematic review of several databases was conducted according to PRISMA guidelines. Studies evaluating the use of 3D printing technology in orthopaedic osteotomy procedures in children (aged ≤ 16 years) were included. Spinal and bone tumour surgery were excluded. Data extracted included demographics, disease pathology, target bone, type of technology, imaging modality used, qualitative/quantitative outcomes and follow-up. Articles were further categorized as either ‘pre-operative’ or ‘intra-operative’ applications of the technology. Twenty-two articles fitting the inclusion criteria were included. The reported studies included 212 patients. There were five articles of level of evidence 3 and 17 level 4. A large variety of outcomes were reported with the most commonly used being operating time, fluoroscopic exposure and intra-operative blood loss. A significant difference in operative time, fluoroscopic exposure, blood loss and angular correction was found in the ‘intra-operative’ application group. No significant difference was found in the ‘pre-operative’ category. Despite a relatively low evidence base pool of studies, our aggregate data demonstrate a benefit of 3D printing technology in various deformity correction applications, especially when used in the ‘intra-operative’ setting. Further research including paediatric-specific core outcomes is required to determine the potential benefit of this novel addition. Cite this article: EFORT Open Rev 2021;6:130-138. DOI: 10.1302/2058-5241.6.200092


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Suriya Luenam ◽  
Arkaphat Kosiyatrakul ◽  
Chanon Hansudewechakul ◽  
Kantapat Phakdeewisetkul ◽  
Boonrat Lohwongwatana ◽  
...  

Successful treatment of the chronic persistent elbow instability is a challenge for orthopedic surgeons. In this form, it is important to recognize and restore the osseous stabilizer in order to obtain the concentric reduction. In the present report, we describe a case of such injury with irreparable radial head treated with patient-specific radial head prosthesis which was created with 3D printing technology. To our knowledge, this is the first report in clinical use of this kind of prosthesis for the radial head fracture. At a 24-month follow-up visit, the patient was satisfied with the functional outcomes. The Mayo Elbow Performance Index (MEPI) increased from 20 points at the preoperative day to 85 points, and the patient-based Disabilities of the Arm, Shoulder, and Hand (DASH) was reduced from 88.33 points to 28.33 points. Due to the favorable result, replacement of the radial head with the patient-specific implant could be a useful treatment for the irreparable radial head in chronic persistent elbow instability.


2014 ◽  
Vol 41 (6Part26) ◽  
pp. 443-443 ◽  
Author(s):  
W Zou ◽  
T Fisher ◽  
B Swann ◽  
R Siderits ◽  
M McKenna ◽  
...  

Author(s):  
Cara K. Black ◽  
Laurel D. Ormiston ◽  
Kenneth L. Fan ◽  
Vikas S. Kotha ◽  
Christopher Attinger ◽  
...  

Abstract Background There are many factors to consider when choosing between amputations versus salvage in lower extremity reconstructive surgery. Postoperative functionality and survival benefit are critical factors when deciding between limb salvage and amputation. Methods In this review, we present the evidence and the risks and benefits between these two options in the setting of the acute, trauma population and the chronic, diabetes population. Results The trauma population is on average young without significant comorbidities and with robust vasculature and core strength for recovery. Therefore, these patients can often recover significant function with anamputation and prosthesis. Amputation can therefore be the more desirable in this patient population, especially in the case of complete traumatic disruption, unstable patients, high risk of extensive infection, and significant nerve injury. However, traumatic lower extremity reconstruction is also a viable option, especially in the case of young patients and those with intact plantar sensation and sufficient available tissue coverage. The diabetic population with lower extremity insult has on average a higher comorbidity profile and often lower core strength. These patients therefore often benefit most from reconstruction to preserve limb length and improve survival. However, amputation may be favored for diabetics that have no blood flow to the lower extremity, recalcitrant infection, high-risk comorbidities that preclude multiple operations, and those with end stage renal disease. Conclusion Many patient-specific factors should be considered when deciding between amputation vs. salvage in the lower extremity reconstruction population.


2021 ◽  
Author(s):  
Vega Pradana Rachim ◽  
Sung-Min Park

Abstract Thin-film microfabrication-based bio-integrated sensors are widely used for a broad range of applications that require continuous measurements of biophysical and biochemical signals from the human body. Typically, they are fabricated using standard photolithography and etching techniques. This traditional method is capable of producing a precise, thin, and flexible bio-integrated sensor system. However, it has several drawbacks, such as the fact that it can only be used to fabricate sensors on a planar surface, it is highly complex requiring specialized high-end facilities and equipment, and it mostly allows only 2D features to be fabricated. Therefore, developing bio-integrated sensors via 3D-printing technology has attracted particular interest. 3D-printing technology offers the possibility to develop sensors on nonplanar substrates, which is beneficial for noninvasive bio-signal sensing, and to directly print on complex 3D nonplanar organ structures. Moreover, this technology introduces a highly flexible and precisely controlled printing process to realize patient-specific sensor systems for ultimate personalized medicine, with the potential of rapid prototyping and mass customization. This review summarizes the latest advancements in 3D-printed bio-integrated systems, including 3D-printing methods and employed printing materials. Furthermore, two widely used 3D-printing techniques are discussed, namely, ex-situ and in-situ fabrication techniques, which can be utilized in different types of applications, including wearable and smart-implantable biosensor systems.


2019 ◽  
pp. 417-423
Author(s):  
A. Chiriac ◽  
A. Iencean ◽  
Georgiana Ion ◽  
G. Stan ◽  
S. Munteanu ◽  
...  

Medical implications of 3-dimensional (3D) printing technology have progressed with increasingly used especially in surgical fields. 3D printing techniques are practical and anatomically accurate methods of producing patient specific models for medical education, surgical planning, training and simulation, and implants production for the assessment and treatment of neurosurgical diseases. This article presents the main directions of 3D printing models application in neurosurgery.


Sign in / Sign up

Export Citation Format

Share Document