scholarly journals Comparable prediction of breast cancer risk from a glimpse or a first impression of a mammogram

Author(s):  
E. M. Raat ◽  
I. Farr ◽  
J. M. Wolfe ◽  
K. K. Evans

AbstractExpert radiologists can discern normal from abnormal mammograms with above-chance accuracy after brief (e.g. 500 ms) exposure. They can even predict cancer risk viewing currently normal images (priors) from women who will later develop cancer. This involves a rapid, global, non-selective process called “gist extraction”. It is not yet known whether prolonged exposure can strengthen the gist signal, or if it is available solely in the early exposure. This is of particular interest for the priors that do not contain any localizable signal of abnormality. The current study compared performance with brief (500 ms) or unlimited exposure for four types of mammograms (normal, abnormal, contralateral, priors). Groups of expert radiologists and untrained observers were tested. As expected, radiologists outperformed naïve participants. Replicating prior work, they exceeded chance performance though the gist signal was weak. However, we found no consistent performance differences in radiologists or naïves between timing conditions. Exposure time neither increased nor decreased ability to identify the gist of abnormality or predict cancer risk. If gist signals are to have a place in cancer risk assessments, more efforts should be made to strengthen the signal.

2009 ◽  
Vol 15 ◽  
pp. S72-S75 ◽  
Author(s):  
Lucile L. Adams-Campbell ◽  
Kepher H. Makambi ◽  
Wayne A.I. Frederick ◽  
Melvin Gaskins ◽  
Robert L. DeWitty ◽  
...  

2010 ◽  
Vol 70 (2) ◽  
pp. 552-559 ◽  
Author(s):  
Wenyi Wang ◽  
Kristin B. Niendorf ◽  
Devanshi Patel ◽  
Amanda Blackford ◽  
Fabio Marroni ◽  
...  

2020 ◽  
Author(s):  
Lin Peng-Chan ◽  
Hui-O Chen ◽  
Chih-Jung Lee ◽  
Yu-Min Yeh ◽  
Meng-Ru Shen ◽  
...  

Abstract Background Functional disruptions by large germline genomic structural variants in susceptible genes are known risks for cancer. Few studies have used deletion structural variants (DSVs) to predict cancer risk with neural networks or studied the relationship between DSVs and immune gene expression to stratify prognosis.Methods Whole-genome sequencing (WGS) data was analyzed with the blood samples of 192 cancer and 499 noncancer subjects with or without family cancer history (FCH). Ninety-nine colorectal cancer (CRC) patients had immune response gene expression data. To build the cancer risk predictive model and identify DSVs in familial cancer, we used joint calling tools and attention-weighted model. The survival support vector machine (survival-SVM) was used to select prognostic DSVs. Results We identified 671 DSVs that could predict cancer risk. The area under the curve (AUC) of receiver operating characteristic curve (ROC) of attention-weighted model was 0.71. The 3 most frequent DSV genes observed in cancer patients were identified as ADCY9, AURKAPS1, and RAB3GAP2 (p < 0.05). We identified 65 immune-associated DSV markers for assessing cancer prognosis (P < 0.05). The functional protein of MUC4 DSV gene interacted with MAGE1expresssion, according to the STRING database. The causal inference model showed that deleting the CEP72 DSV gene could affect the recurrence-free survival (RFS) of IFIT1 expression. Conclusions We established an explainable attention-weighted model for cancer risk prediction and used the survival-SVM for prognostic stratification by using DSV and immune gene expression datasets. It can provide the genetic landscape of cancer patients and help predict the clinical outcome.


Sign in / Sign up

Export Citation Format

Share Document