scholarly journals Differentiation of the right versus left outflow tract ventricular arrhythmias using local activation time at the His bundle electrogram

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Won-Seok Choe ◽  
So-Ryoung Lee ◽  
Myung-Jin Cha ◽  
Eue-Keun Choi ◽  
Seil Oh

Abstract Background Although multiple algorithms based on surface electrocardiographic criteria have been introduced to localize idiopathic ventricular arrhythmia (VA) origins from the outflow tract (OT), their diagnostic accuracy and clinical usefulness remain limited. We evaluated whether local activation time of the His bundle region could differentiate left and right ventricular OT VA origins in the early stage of electrophysiology study. Methods We studied 30 patients who underwent catheter ablation for OT VAs with a left bundle branch block pattern and inferior axis QRS morphology. The interval between the local V signal on the mapping catheter placed in the RVOT and His bundle region (V(RVOT)-V(HB) interval) and the interval from QRS complex onset to the local V signal on the His bundle region (QRS-V(HB) interval) were measured during VAs. Results The V(RVOT)-V(HB) and QRS-V(HB) intervals were significantly shorter in patients with LVOT VAs. The area under the curve (AUC) for the V(RVOT)-V(HB) interval by receiver operating characteristic analysis was 0.865. A cutoff value of ≤ 50 ms predicted an LVOT origin of VA with sensitivity, specificity, and positive and negative predictive values of 100%, 62.5%, 40%, and 100%, respectively. The QRS-V(HB) interval showed similar diagnostic accuracy (AUC, 0.840), and a cutoff value of ≤ 15 ms predicted an LVOT origin of VA with a sensitivity, specificity, and positive and negative predictive values of 100%, 70.8%, 45.2%, and 100%, respectively. Conclusion The V(RVOT)-V(HB) and QRS-V(HB) intervals could differentiate left from right OT origins of VA with high sensitivity and negative predictive values.

Diagnostics ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 853
Author(s):  
Yoshinobu Ishiwata ◽  
Yojiro Hieda ◽  
Soichiro Kaki ◽  
Shinjiro Aso ◽  
Keiichi Horie ◽  
...  

We examined whether water-hydroxyapatite (HAP) images improve the diagnostic accuracy of bone metastasis compared with non-contrast CT alone. We retrospectively evaluated dual-energy computed tomography (DECT) images of 83 cancer patients (bone metastasis, 31; without bone metastasis, 52) from May 2018 to June 2019. Initially, two evaluators examined for bone metastasis on conventional CT images. In the second session, both CT and CT images plus water-HAP images on DECT. The confidence of bone metastasis was scored from 1 (benign) to 5 (malignant). The sensitivity, specificity, positive predictive values, and negative predictive values for both modalities were calculated based on true positive and negative findings. The intra-observer area under curve (AUC) for detecting bone metastasis was compared by receiver operating characteristic analysis. Kappa coefficient calculated the inter-observer agreement. In conventional CT images, sensitivity, specificity, positive predictive value, and negative predictive value of raters 1 and 2 for the identification of bone metastases were 0.742 and 0.710, 0.981 and 0.981, 0.958 and 0.957, and 0.864 and 0.850, respectively. In water-HAP, they were 1.00 and 1.00, 0.981 and 1.00, 0.969 and 1.00, and 1.00 and 1.00, respectively. In CT, AUCs were 0.861 and 0.845 in each observer. On water-HAP images, AUCs were 0.990 and 1.00. Kappa coefficient was 0.964 for CT and 0.976 for water-HAP images. The combination of CT and water-HAP images significantly increased diagnostic accuracy for detecting bone metastasis. Water-HAP images on DECT may enable accurate initial staging, reduced radiation exposure, and cost.


EP Europace ◽  
2021 ◽  
Author(s):  
Beatriz Jáuregui ◽  
Juan Fernández-Armenta ◽  
Juan Acosta ◽  
Diego Penela ◽  
Cheryl Terés ◽  
...  

Abstract Aims To assess potential benefits of a local activation time (LAT) automatic acquisition protocol using wavefront annotation plus an ECG pattern matching algorithm [automatic (AUT)-arm] during premature ventricular complex (PVC) ablation procedures. Methods and results Prospective, randomized, controlled, and international multicentre study (NCT03340922). One hundred consecutive patients with indication for PVC ablation were enrolled and randomized to AUT (n = 50) or manual (MAN, n = 50) annotation protocols using the CARTO3 navigation system. The primary endpoint was mapping success. Clinical success was defined as a PVC-burden reduction of ≥80% in the 24-h Holter within 6 months after the procedure. Mean age was 56 ± 14 years, 54% men. The mean baseline PVC burden was 25 ± 13%, and mean left ventricular ejection fraction (LVEF) 55 ± 11%. Baseline characteristics were similar between the groups. The most frequent PVC-site of origin were right ventricular outflow tract (41%), LV (25%), and left ventricular outflow tract (17%), without differences between groups. Radiofrequency (RF) time and number of RF applications were similar for both groups. Mapping and procedure times were significantly shorter in the AUT-arm (25.5 ± 14.3 vs. 32.8 ± 12.6 min, P = 0.009; and 54.8 ± 24.8 vs. 67.4 ± 25.2, P = 0.014, respectively), while more mapping points were acquired [136 (94–222) AUT vs. 79 (52–111) MAN; P < 0.001]. Mapping and clinical success were similar in both groups. There were no procedure-related complications. Conclusion The use of a complete automatic protocol for LAT annotation during PVC ablation procedures allows to achieve similar clinical endpoints with higher procedural efficiency when compared with conventional, manual annotation carried out by expert operators.


EP Europace ◽  
2017 ◽  
Vol 19 (suppl_3) ◽  
pp. iii254-iii255
Author(s):  
T J R De Potter ◽  
E. Silva Garcia ◽  
T. Strisciuglio ◽  
T. Bar-On ◽  
S. Chatzikyriakou ◽  
...  

Author(s):  
Yingchun Liu ◽  
Lin Chen ◽  
Jia Zhan ◽  
Xuehong Diao ◽  
Yun Pang ◽  
...  

Objective: To explore inter-observer agreement on the evaluation of automated breast volume scanner (ABVS) for breast masses. Methods: A total of 846 breast masses in 630 patients underwent ABVS examinations. The imaging data were independently interpreted by senior and junior radiologists regarding the mass size ([Formula: see text][Formula: see text]cm, [Formula: see text][Formula: see text]cm and total). We assessed inter-observer agreement of BI-RADS lexicons, unique descriptors of ABVS coronal planes. Using BI-RADS 3 or 4a as a cutoff value, the diagnostic performances for 331 masses with pathological results in 253 patients were assessed. Results: The overall agreements were substantial for BI-RADS lexicons ([Formula: see text]–0.779) and the characteristics on the coronal plane of ABVS ([Formula: see text]), except for associated features ([Formula: see text]). However, the overall agreement was moderate for orientation ([Formula: see text]) for the masses [Formula: see text][Formula: see text]cm. The agreements were substantial to be perfect for categories 2, 3, 4, 5 and overall ([Formula: see text]–0.918). However, the agreements were moderate to substantial for categories 4a ([Formula: see text]), 4b ([Formula: see text]), and 4c ([Formula: see text]), except for category 4b of the masses [Formula: see text][Formula: see text]cm ([Formula: see text]). Moreover, for radiologists 1 and 2, there were no significant differences in sensitivity, specificity, accuracy, positive and negative predictive values with BI-RADS 3 or 4a as a cutoff value ([Formula: see text] for all). Conclusion: ABVS is a reliable imaging modality for the assessment of breast masses with good inter-observer agreement.


2019 ◽  
Vol 09 (03) ◽  
pp. e262-e267
Author(s):  
Henry Alexander Easley ◽  
Todd Michael Beste

Objectives To evaluate the diagnostic accuracy of a multivariable prediction model, the Shoulder Screen (Perigen, Inc.), and compare it with the American College of Obstetricians and Gynecologists (ACOG) guidelines to prevent harm from shoulder dystocia. Study Design The model was applied to two groups of 199 patients each who delivered during a 4-year period. One group experienced shoulder dystocia and the other group delivered without shoulder dystocia. The model's accuracy was analyzed. The performance of the model was compared with the ACOG guideline. Results The sensitivity, specificity, positive, and negative predictive values of the model were 23.1, 99.5, 97.9, and 56.4%, respectively. The sensitivity of the ACOG guideline was 10.1%. The false-positive rate of the model was 0.5%. The accuracy of the model was 61.3%. Conclusion A multivariable prediction model can predict shoulder dystocia and is more accurate than ACOG guidelines.


Author(s):  
Michael Michail ◽  
Abdul-Rahman Ihdayhid ◽  
Andrea Comella ◽  
Udit Thakur ◽  
James D. Cameron ◽  
...  

Background: Coronary artery disease is common in patients with severe aortic stenosis. Computed tomography-derived fractional flow reserve (CT-FFR) is a clinically used modality for assessing coronary artery disease, however, its use has not been validated in patients with severe aortic stenosis. This study assesses the safety, feasibility, and validity of CT-FFR in patients with severe aortic stenosis. Methods: Prospectively recruited patients underwent standard-protocol invasive FFR and coronary CT angiography (CTA). CTA images were analyzed by central core laboratory (HeartFlow, Inc) for independent evaluation of CT-FFR. CT-FFR data were compared with FFR (ischemia defined as FFR ≤0.80). Results: Forty-two patients (68 vessels) underwent FFR and CTA; 39 patients (92.3%) and 60 vessels (88.2%) had interpretable CTA enabling CT-FFR computation. Mean age was 76.2±6.7 years (71.8% male). No patients incurred complications relating to premedication, CTA, or FFR protocol. Mean FFR and CT-FFR were 0.83±0.10 and 0.77±0.14, respectively. CT calcium score was 1373.3±1392.9 Agatston units. On per vessel analysis, there was positive correlation between FFR and CT-FFR (Pearson correlation coefficient, R =0.64, P <0.0001). Sensitivity, specificity, positive predictive value, and negative predictive values were 73.9%, 78.4%, 68.0%, and 82.9%, respectively, with 76.7% diagnostic accuracy. The area under the receiver-operating characteristic curve for CT-FFR was 0.83 (0.72–0.93, P <0.0001), which was higher than that of CTA and quantitative coronary angiography ( P =0.01 and P <0.001, respectively). Bland-Altman plot showed mean bias between FFR and CT-FFR as 0.059±0.110. On per patient analysis, the sensitivity, specificity, positive predictive, and negative predictive values were 76.5%, 77.3%, 72.2%, and 81.0% with 76.9% diagnostic accuracy. The per patient area under the receiver-operating characteristic curve analysis was 0.81 (0.67–0.95, P <0.0001). Conclusions: CT-FFR is safe and feasible in patients with severe aortic stenosis. Our data suggests that the diagnostic accuracy of CT-FFR in this cohort potentially enables its use in clinical practice and provides the foundation for future research into the use of CT-FFR for coronary evaluation pre-aortic valve replacement.


Author(s):  
Richard Norris ◽  
Christian Kopkow ◽  
Michael James McNicholas

ObjectivesTo determine the accuracy of the dial test, used alone and in combination with additional clinical tests, in the diagnosis of an isolated posterolateral corner (PLC) injury, combined PLC-posterior cruciate ligament (PCL) injury or medial knee injury.MethodsA retrospective analysis of consecutive patients who underwent arthroscopic and/or open knee ligament reconstruction surgery was conducted. The dial test was performed in an outpatient’s clinic as part of a routine knee examination. Examination under anaesthetic and intraoperative findings were used as the reference standard test to determine the diagnostic accuracy of the dial test used alone and in combination with other PCL and medial knee tests. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (LR+) and negative likelihood ratio (LR−) were calculated with corresponding 95% CI.ResultsData from 87 patients were available and included in the data analysis. For an isolated PLC injury, the dial test sensitivity and specificity were 0.20 (95% CI 0.08 to 0.39) and 1.00 (95% CI 0.92 to 1.00). The PPV and NPV were 1.00 (95% CI 0.52 to 1.00) and 0.70 (95% CI 0.59 to 0.80). LR+ and LR− of the dial test detecting isolated PLC injury were infinity (95% CI calculation not possible, infinity) and 0.80 (95% CI 0.41 to 1.57). The diagnostic accuracy of the dial test, when used alone and in combination with other PCL and medial knee tests, was also calculated for combined PLC-PCL and medial knee injuries.ConclusionA negative dial test at 30° of knee flexion can rule out a PLC injury, while a test that is positive at 30° and negative at 90° indicates a PLC injury, without concomitant injury to the PCL or medial knee ligaments. A positive test at both 30° and 90° can indicate isolated PLC, combined PLC-PCL or medial ligament injuries, and other knee examination findings are required to differentially diagnose these injury patterns.Level of evidenceII.


Sign in / Sign up

Export Citation Format

Share Document