scholarly journals Accuracy analysis of gradient reconstruction on isotropic unstructured meshes and its effects on inviscid flow simulation

2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Nianhua Wang ◽  
Ming Li ◽  
Rong Ma ◽  
Laiping Zhang

Abstract The accuracy of gradient reconstruction methods on unstructured meshes is analyzed both mathematically and numerically. Mathematical derivations reveal that, for gradient reconstruction based on the Green-Gauss theorem (the GG methods), if the summation of first-and-lower-order terms does not counterbalance in the discretized integral process, which rarely occurs, second-order accurate approximation of face midpoint value is necessary to produce at least first-order accurate gradient. However, gradient reconstruction based on the least-squares approach (the LSQ methods) is at least first-order on arbitrary unstructured grids. Verifications are performed on typical isotropic grid stencils by analyzing the relationship between the discretization error of gradient reconstruction and the discretization error of the face midpoint value approximation of a given analytic function. Meanwhile, the numerical accuracy of gradient reconstruction methods is examined with grid convergence study on typical isotropic grids. Results verify the phenomenon of accuracy degradation for the GG methods when the face midpoint value condition is not satisfied. The LSQ methods are proved to be at least first-order on all tested isotropic grids. To study gradient accuracy effects on inviscid flow simulation, solution errors are quantified using the Method of Manufactured Solutions (MMS) which was validated before adoption by comparing with an exact solution case, i.e., the 2-dimensional (2D) inviscid isentropic vortex. Numerical results demonstrate that the order of accuracy (OOA) of gradient reconstruction is crucial in determining the OOA of numerical solutions. Solution accuracy deteriorates seriously if gradient reconstruction does not reach first-order.

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Darae Jeong ◽  
Yibao Li ◽  
Chaeyoung Lee ◽  
Junxiang Yang ◽  
Yongho Choi ◽  
...  

In this paper, we propose a verification method for the convergence rates of the numerical solutions for parabolic equations. Specifically, we consider the numerical convergence rates of the heat equation, the Allen–Cahn equation, and the Cahn–Hilliard equation. Convergence test results show that if we refine the spatial and temporal steps at the same time, then we have the second-order convergence rate for the second-order scheme. However, in the case of the first-order in time and the second-order in space scheme, we may have the first-order or the second-order convergence rates depending on starting spatial and temporal step sizes. Therefore, for a rigorous numerical convergence test, we need to perform the spatial and the temporal convergence tests separately.


2011 ◽  
Vol 110-116 ◽  
pp. 2277-2283 ◽  
Author(s):  
Xiang Meng Zhang ◽  
Ben Li Wang ◽  
Xian Ren Kong ◽  
A Yang Xiao

In this paper, He’s homotopy perturbation method (HPM) is applied to solve harmonically forced Duffing systems. Non-resonance of an undamped Duffing system and the primary resonance of a damped Duffing system are studied. In the former case, the first-order analytical approximations to the system’s natural frequency and periodic solution are derived by HPM, which agree well with the numerical solutions. In the latter case, based on HPM, the first-order approximate solution and the frequency-amplitude curves of the system are acquired. The results reveal that HPM is an effective technique to the forced Duffing systems.


2020 ◽  
Vol 422 ◽  
pp. 108325 ◽  
Author(s):  
Mandeep Deka ◽  
Shuvayan Brahmachary ◽  
Ramakrishnan Thirumalaisamy ◽  
Amaresh Dalal ◽  
Ganesh Natarajan

2017 ◽  
Vol 822 ◽  
pp. 012030
Author(s):  
Manish K Singh ◽  
N Munikrishna ◽  
V Ramesh ◽  
N Balakrishnan

2000 ◽  
Vol 189 (4) ◽  
pp. 1247-1275 ◽  
Author(s):  
O. Hassan ◽  
E.J. Probert ◽  
K. Morgan ◽  
N.P. Weatherill

1987 ◽  
Vol 109 (3) ◽  
pp. 213-217 ◽  
Author(s):  
S. Abdallah ◽  
R. E. Henderson

Quasi three dimensional blade-to-blade solutions for stators and rotors of turbomachines are obtained using the Streamline Curvature Method (SLCM). The first-order velocity gradient equation of the SLCM, traditionally solved for the velocity field, is reformulated as a second-order elliptic differential equation and employed in tracing the streamtubes throughout the flow field. The equation of continuity is then used to calculate the velocity. The present method has the following advantages. First, it preserves the ellipticity of the flow field in the solution of the second-order velocity gradient equation. Second, it eliminates the need for curve fitting and strong smoothing under-relaxation in the classical SLCM. Third, the prediction of the stagnation streamlines is a straightforward matter which does not complicate the present procedure. Finally, body-fitted curvilinear coordinates (streamlines and orthogonals or quasi-orthogonals) are naturally generated in the method. Numerical solutions are obtained for inviscid incompressible flow in rotating and non-rotating passages and the results are compared with experimental data.


Sign in / Sign up

Export Citation Format

Share Document