scholarly journals RP-HPLC method development and validation for the quantification of Efonidipine hydrochloride in HME processed solid dispersions

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Ashish S. Rajput ◽  
Durgesh K. Jha ◽  
Sharda Gurram ◽  
Devanshi S. Shah ◽  
Purnima D. Amin

Abstract Background Efonidipine hydrochloride (EFO) is a poorly water-soluble drug and, hence, has poor bioavailability. Solid dispersions (SDs) of EFO using Eudragit EPO were prepared using hot-melt extrusion (HME) for the first time. The current study aims at developing a simple RP-HPLC method to quantify EFO in the developed SDs. Results The chromatographic separation was carried out on an Agilent Eclipsed XDB-C18 column (4.6 × 250 mm), packed with 5 μm particles. The optimized mobile phase consisted of HPLC grade acetonitrile and 0.020 mol/L KH2PO4 (pH 2.5) buffer in the ratio of 85:15 v/v with a flow rate optimized at 1.2 ml/min. The developed method was validated for system suitability, linearity, accuracy, precision, and robustness. The linearity results showed an excellent linear relationship between the drug concentration and peak area, indicating the peak area is directly proportional to the analyte concentration within a specific range and an excellent correlation coefficient of 0.9998. Intermediate precision and repeatability confirmed that the method provides precise results with %RSD value less than 2% for EFO. The assay results of the developed formulations were in the acceptable range with RSD less than 2%. The enhanced drug dissolution from the Eudragit EPO carrier with 10% Citric Acid (CA) is attributed to the conversion of the drug from crystalline to amorphous form, and microenvironmental acidic pH provided by CA. Conclusion In a nutshell, the developed RP-HPLC method showed excellent ability to differentiate the formulations and highlights the role of the polymer and the plasticizer. Graphical abstract

Author(s):  
THIRUPATHI DONGALA ◽  
Santhosh Kumar Ettaboina ◽  
Naresh Kumar Katari

Abstract Hydroxychloroquine sulfate is one of a large series of 4-aminoquinolines with antimalarial activity. Moreover, it is used for the treatment of rheumatoid arthritis. Sometimes Hydroxychloroquine sulfate is very effective for the treatment of autoimmune diseases. Based on the recent clinical experiments it is exploiting for the treatment of COVID-19, corona virus across the globe. A Reverse phase RP-HPLC method have been developed and validated as per the current ICH guidelines for estimation of Hydroxychloroquine sulfate tablets. As part of method validation specificity, linearity, precision and recovery parameters were verified. The concentration and area relationships were linear (R2 > 0.999), over the concentration range of 25 to 300 µg mL-1 for HCQ. The relative standard deviations for precision and intermediate precision were less than 1.5%. The proposed RP-HPLC generic method was applied successfully for evaluation of invitro dissolution profile with different pH conditions like 0.1N HCl, pH 4.5 Acetate buffer and pH 6.8 Phosphate buffers of US marketed reference product.


2017 ◽  
Vol 4 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Pankaj V. Dangre ◽  
Vikesh B. Sormare ◽  
Mangesh D. Godbole

Background: Bosentan monohydrate (BM), a dual endothelin receptor antagonist, is indicated for the treatment of patients with pulmonary arterial hypertension (PAH). It is poorly soluble in water, and having absolute bioavailability of 50%. Objective: The aim of the present work is to develop and evaluate the solid dispersions (SD) of a poorly water soluble drug bosentan monohydrate (BM). Method: Solid dispersions (SDs) systems of BM were prepared with Hydroxy propyle β-cyclodextrin (HPβ-CD) and Polyethylene glycol (PEG-4000) polymers using a spray drying technique. Result: The significant rise in a saturation solubility 174.23±1.36 mg/mL; and drug dissolution 95.11±1.22%; was observed with optimized formulation (SD 6). The solid state characterization of optimized formulation (SD 6) by SEM, DSC, and XRPD revealed the absence of crystalline nature of BM in solid dispersion. High dissolution rate of solid dispersion (SD 6) compared with pure drug indicated the increase in dissolution characteristics. Conclusion: In conclusion, our studies illustrated that spray drying technique could be useful large scale producing method to prepare the solid dispersion of bosentan with HP β-CD, which can improve the solubility as well as stability of the formulation.


2020 ◽  
Vol 10 (1) ◽  
pp. 92-96
Author(s):  
Balakrishna Tiwari ◽  
Mrunal K. Shirsat ◽  
Amol Kulkarni

Brinzolamide is inhibitor of carbonic anhydride and is highly specific and non-competitive. The aim of the present study is to develop a simple, precise, accurate, sensitive RP-HPLC method for the determination of bulk drug. The objective of the method validation is to demonstrate whether the method was suited for the intended purpose. The method was validated as per the ICH guidelines. The method was validated for linearity, precision (repeatability, intermediate precision), accuracy, specificity, robustness, ruggedness, limit of detection and limit of quantification. Cosmosil (4.6X250mm, 5 μ) column was used for separation. The selected wavelength for Brinzolamide was 254 nm. The mobile phase consists of Acetonitrile: Potassium dihydrogen phosphate buffer (40:60). Flow rate was delivered at 1.0 mL/min. Appropriate dilutions of standard stock solutions were prepared to get desired concentrations in the range of 100-500 mcg/ml. The equation od standard curve was y = 441.8x + 1132 and R2 = 0.998. The RT obtained was 6.6167 minutes. Keywords: Brinzolamide, UV spectroscopy, RP-HPLC, ICH


2012 ◽  
Vol 506 ◽  
pp. 307-310 ◽  
Author(s):  
Benchawan Chamsai ◽  
Pornsak Sriamornsak

Solid dispersions of poorly water-soluble drug, indomethacin (IMC), and carriers at a ratio of 1:9 were prepared by melting method. The carriers used in this study were polyethylene glycol 4000 (PEG4000), hydroxypropyl methylcellulose (HPMC) and pectin. The solid dispersions obtained were characterized by powder x-ray diffractometry (PXRD) and dissolution studies. PXRD patterns showed that all solid dispersions led to amorphous products while their physical mixture still showed the crystalline state of drug. Crystalline drug was clearly detectable in solid dispersion products containing only IMC and PEG4000 after storage for 2 months. The formulations with biopolymer (i.e., HPMC, pectin or their combination) showed no drug crystal after storage. More than 80% of IMC dissolved within 5 minutes for all formulations after preparation while less than 40% of IMC dissolved, within 5 minutes, from the formulations containing IMC, PEG4000 and HPMC after storage for 2 months. The slower drug dissolution may be due to the gel-forming properties of HPMC as well as the agglomeration of the products after storage. The results suggested that either HPMC or pectin in solid dispersions can help to prevent the crystallization of amorphous IMC in solid dispersion, probably by a polymer anti-plasticizing effect. Pectin showed superior stabilizing effect with no retardation effect on drug dissolution.


Author(s):  
Swapna Singh ◽  
Prem Kumar Bichala ◽  
Abhishek Agrawal

A new method was established for simultaneous estimation of Canagliflozin by RP-HPLC method. The chromatographic conditions were successfully developed for the separation of Canagliflozin by using INERTSIL column, C18 (150x4.6)5µm column, flow rate was 1ml/min, mobile phase ratio was Water: Acetonitrile (70:30), detection wavelength was 264nm. The instrument used was Hitachi HPLC Auto Sampler, Separation module 1575. The analytical method was validated according to ICH guidelines (ICH, Q2 (R1)). The linearity study for Canagliflozin was found in concentration range of 1μg-5μg and 100μg-500μg and correlation coefficient (r2) was found to be 0.999 and 0.999, %mean recovery was found to be 100% and 100.5%, %RSD for repeatability was 0.2 and 0.4, %RSD for intermediate precision was 0.5 and 0.1 respectively.


2020 ◽  
Author(s):  
THIRUPATHI DONGALA ◽  
Santhosh Kumar Ettaboina ◽  
Naresh Kumar Katari

Abstract Hydroxychloroquine sulfate is one of a large series of 4-aminoquinolines with antimalarial activity. Moreover, it is used for the treatment of rheumatoid arthritis. Sometimes Hydroxychloroquine sulfate is very effective for the treatment of autoimmune diseases. Based on the recent clinical experiments it is exploiting for the treatment of COVID-19, corona virus across the globe. A Reverse phase RP-HPLC method have been developed and validated as per the current ICH guidelines for estimation of Hydroxychloroquine sulfate tablets. As part of method validation specificity, linearity, precision and recovery parameters were verified. The concentration and area relationships were linear (R2 > 0.999), over the concentration range of 25 to 300 µg mL-1 for HCQ. The relative standard deviations for precision and intermediate precision were less than 1.5%. The proposed RP-HPLC generic method was applied successfully for evaluation of invitro dissolution profile with different pH conditions like 0.1N HCl, pH 4.5 Acetate buffer and pH 6.8 Phosphate buffers of US marketed reference product.


2012 ◽  
Vol 2 (2) ◽  
pp. 364-367 ◽  
Author(s):  
Saida Naik Dheeravath ◽  
◽  
Kasani Ramadevi ◽  
Zilla Saraswathi ◽  
Dheeravath Maniklal ◽  
...  

2012 ◽  
pp. 31-35
Author(s):  
Truong Dinh Thao Tran ◽  
Ha Lien Phuong Tran ◽  
Nghia Khanh Tran ◽  
Van Toi Vo

Purposes: Aims of this study are dissolution enhancement of a poorly water-soluble drug by nano-sized solid dispersion and investigation of machenism of drug release from the solid dispersion. A drug for osteoporosis treatment was used as the model drug in the study. Methods: melting method was used to prepare the solid dispersion. Drug dissolution rate was investigated at pH 1.2 and pH 6.8. Drug crystallinity was studied using differential scanning calorimetric and powder X-ray diffraction. In addition, droplet size and contact angle of drug were determined to elucidate mechanism of drug release. Results: Drug dissolution from the solid dispersion was significantly increased at pH 1.2 and pH 6.8 as compared to pure drug. Drug crystallinity was changed to partially amorphous. Also dissolution enhancement of drug was due to the improved wettability. The droplet size of drug was in the scale of nano-size when solid dispersion was dispersed in dissolution media. Conclusions: nano-sized solid dispersion in this research was a successful preparation to enhance bioavailability of a poorly water-soluble drug by mechanisms of crystal changes, particle size reduction and increase of wet property.


Sign in / Sign up

Export Citation Format

Share Document